Session SMF303

Best Practices for User Interfaces

Tamar E. Granor, Ph.D.

Tomorrow's Solutions, LLC

8201 Cedar Road

Elkins Park, PA 19027

Voice: 2156351958

Fax: 2156352234

Email: tamar@tomorrowssolutionslic.com

The user interface is your applicatiomlppearance to the world. Throwing it together as an afterthought

is like putting on the first clothes you grab from your closet. In both cases, the result may or may not look
good and may or may not be appropriate to the occasion. This session wilt@tathe top and dig

down into the mysteries of designing the interaction and interface of an application. After discussing why
user interfaces matter, it will provide best practices for both the design and implementation stages.
Although the code examplfEs this session use Visual FoxPro, the principles and ideas apply across
developmenplatforms, thoughveb developmemaises some additional issues not discussed here.

Why do user interfaces matter?

If it was hard to write, it should be hard to use.
-- Old Programmer Wisdom

The maxim above pretty much sums up the view of many software developers. They implement

user interfaces that reflect the underlying a
how hard or easy the resultistouse. Tharpeonse t o user s compl aints
just need to |l earn how it works. They rail ab

Is it just the users? Does it really matter what the user interface of your applications looks like
and how it woks? Yes, interfaces matter. In fact, a bad user interface can havecianlging
or life-threatening consequences.

I n the United Statesd Presidential election o
design Figure 1) meant to make it easier to fit all the candidates onto a dpalgle. The design
introduced confusion as to which hole to punch to vote for Al Gore. While normally such
confusion wouldndét have mat t etremsetyclosé andthehi s cas
roughly 20,000 affected votes were more than enough to swing Florida for Bush and change the
overall results of the election. (For a user interface oriented look at the butterfly ballot, see
http://www.asktog.com/columns/042ButterflyBallot.htjnl

http://www.asktog.com/columns/042ButterflyBallot.html

Best Practices for User Interfaces 2

Figurel. The fAbutterfly balloto used in Palm Beac
Although Gore/Lieberman is the second group shown on the left, you have to punch the

third hole to choose that ticket. Many voters punched two holes because they were both

next to Gore/Lieberman.

In the ensuing discussion, many people blamed the voters for their mistakes and the word
Astupi do was t hmnthousanda of peoptednake Bieisamewmtisike, can they all
be stupid?

Bad user interfaces can cost lives as well as elections. A study published in the Journal of the
American Medical Associatiorh{tp://jama.amassn.org/cgi/content/abstract/293/10/1197

reported on 22 different ways a particular medicine order entry system led to medication errors.
Among the problems were default values that misled doctors as to appropriate dusaggs,

data for a patient spread out among multiple screens, fonts too small for clarity and failing to
include the patientés name on every screen fo
that errors occurred at least weekly.

There are othawell-known examples of badigesigned user interfaces leading to death or
serious damage. For example, singengwriter John Denver died in a plane crash, at least in

part due to the planeds builder chalatsing to p
(http://www.asktog.com/columns/027InterfacesThatKill.htinlfact, almost every time an
accident is ascribed to Ahuman errirectlyoo it 6s |

indirectly to the error.

As far as the customer is concerned, the interface is the product.
--Jef Raskin, Macintosh pioneer

http://jama.ama-assn.org/cgi/content/abstract/293/10/1197
http://www.asktog.com/columns/027InterfacesThatKill.html

Best Practices for User Interfaces 3

Beyond safety issues, a good user interface is a strong marketing tool. When users find a product
easy to work with andupportive of their goals, they become loyal, sometimes to the point of
fanaticism. They not only use the product the
has benefited tremendously from this kind of loyalty.

What goes into building the kind afterface that makes users crazy about your product rather
than driving them crazy? As a developer, how can you help the people who use the applications
you create?

The answer has twaspectsThe first task is to design an interaction paradigm that sugpport
rather than hinders users. A great deal has been written on this subject (see the Resources
section) and this document will take only a hlghel look at the subject.

The second step is to make the right choices in creating an actual user interfggentent that
design. This includes choosing the right control for each task; remembering that the computer
belongs to the user, not to your application; supporting different work styles; keeping things
consistent; and much more. The bulk of this docuroensiders these nittgritty issues.

Designing Interaction

When most people sit down in front of a computer, whether at work or at home, their goal is to
accomplish a particular task. Few of them care about how the data is stored, the internal structure
of the menu, or how reporting is optimized. They simply want to write a letter or update a
patientds chart or order 14 dozen widgets or
The purpose of a user interface, then, is to support them in acsbimgltheir goals.

Software developers, on the other hand, are generally fascinated by the details of how things
work. Wedre mostly the kind of people who tak
may not bother to put them back together. We geitek by whizbang cool techniques and love

to show them off.

Not surprisingly, when software developers de
likely to design interfaces that reflect the architecture of the application rather than the tasks
users want to perform with it. The result 1is

rather have their teeth pulled than use some applications.

The best solution to the problem is hard for
havinginteraction designed by experts in design rather than by developers. While hiring user
interaction designers may be realistic for large companies and major applications, most of the
people who want software written are unwilling to invest either the mointhye time to bring in

the pros. Thus most developers inherit the job of designing both the interaction and the interface,
whether they want it or not.

Best Practice: Design First; Code Later

Best Practices for User Interfaces 4

The first place most developers go wrong with user interfadeg not looking at the big picture,
the overall plan for interaction in the application. Interface design is concerned with specific
controls, colors, screen layouts and so forth. Interaction design takes a much larger view,
addressing questions of furamility, paradigm and metaphor. Alan Cooper describes it this
way:

Look and Feel stuff is Interface Design. It's all very stylistic. It's the color that you paint
your walls. Interaction Design is about the Architecture. It's what kind of building are we
building. What functions does it support. What are the shapes of the rooms and the walls
and ceilings. What is the infrastructure. What kind of elevators. What kind of cooling and
heating. That's Interaction Design.
[http://www.uidesign.net/Articles/Intemivs/AnaudiencewithAlanCooper.html]

Plan to design the user interaction before you start writing any code; once you start coding,

t hough you may not realize it, youodre | ocking
will interact. More importary, designing interaction that works for users may affect the overall
architecture of the application.

The place to start is with users. As you collect the information needed to design the application,
listen carefully to what users tell you about theialgand the ways they use (or plan to use) the
application. Make sure to talk to actual users, not just their managers, who may be quite unaware
of how their employees actually work.

Once you understand what different users hope to do with your appljcataite a small

number ofpersonasfictitious characters who represent prototypical users. Personas have names,
biographies, and goals. Find photos to assign to them as well. In short, do anything you can to

make the personas seem like real people. tBlaave one persona for each major type of user of
your application. Generally, youol/ need thre
http://www.infotoday.com/online/jul03/head.shtenin d C oTielemat@ssar®unning the

Asylumfor more on designing personas.)

Let the personas drive interface design. As you consider an approach to a problem, ask yourself
if it would make sense to Bob or Mary Jane. Would David feel comfortable working with this

form? Onceyoutsart designing for individuals rather
|l i kely to really consider whether a particul a
do x,0 no matter what x is, but wteéractupllyu as Kk

think about it.

Like other design processes, interaction design is an iterative process. Once you think you have it
right (on paper), you need to show it to users and let them react. Then, revise to address their
concerns.

Designing Good Inerfaces

Once you have an interaction plan, you still have to design the user interface that implements
that pl an. I n Cooperbés terms, you have the ho
wall colors, furniture, lighting and so forth.

http://www.infotoday.com/online/jul03/head.shtml

Best Practices for User Interfaces 5

Basic principles

As you work on the design, there are a number of principles to keep in mind. (This list is adapted
from the writings of Cooper, Norman, Johnson, Raskin, and others.)

Consistency

This is a simple principle tyhfsamgteingawerksoneo ok e d
way in one part of the Ul, it should work the same way throughout. If you use a Close button to

|l eave one data entry form, another data entry
purpose.

Objectorientation helps enfoecthis kind of consistency, as you can create objects and use them
throughout an application. If every data entry form is to close with a Close button, create a data
entry form class that already has the button on it.

Consistency is important in the ottdérection as well. A word should have a single meaning in

an application. | f you use fAwidgeto for one ¢
a different concept in another part of the application.

Visibility

This principle says to let Bss see what they can do. It may sound obvious, but with both
physical objects and software, there are a surprising number of examples of invisible options.
Figure 2 shows a small toolkit (a giveaway from some epefce); opening it the first time is

not obvious.

Figure 2. This tiny toolkit is opened by pressing in at the seam between the lid and the
container. The only clue is the word APressao
present in this photo, but is unreadable.)

Visual FoxPro offers a good example of an invisible option. One of the most common questions
posed by developers upgrading to VFP 7 or later is how to keep the Command Window from

sitting on top of other windows. &hsolution is to uncheck the Dockable option on the

Command Windowbés tool bar. While the reasoning
so far from the perceived problem as to be hidden.

Best Practices for User Interfaces 6

The principle of visibility also means that a key combinaton a f uncti on key shc
only way to trigger a particular action. It needs to appear on a menu or toolbar or somewhere in
the visible interface as well.

Best Practice: Make every option visible.

Of course, invisibility can be useful in certaituations. An undocumented hot key offers a way
to put a developeros back door into an applic
occasionally without knowing how they got there.

Feedback

The principle of feedback states that users shouldayee indication that their actions were

noted and are being acted on appropriately. F
explicitly added to devices. For example, people expect to feel something when they press a
physical button; deviceswehr e t he buttons dondét actually mov

that the button press was received. In fact, even some devices where the buttons do actually
move, like most telephones, provide auditory feedback.

Similarly, in applications, when the ersdoes something, she needs to know that the application
Aheardo her. Feedback is needed at sever al | e
first kind of feedback is the visual movement of the button. That confirms that she succeeded in
clicking the button, rather than somewhere else.

The next type of feedback tells the user that the application understood the instruction implied by
the button. The actual feedback varies with the situation. For a New or Add button, other

controls on the fornelear and the cursor is placed in the first field. For a Close button, the form
closes. Often, the feedback for a control is obvious. Sometimes, though, you need to add
feedback because thereds no obvi ousometintei ce or
In that situation, you need to use something like a message or a progress bar. (The key, of course,
is to offer feedback that informs the user without impeding her.)

Feedback is also relevant when a button or menu option opens a form. The o>e form

should match the buttonds caption or menu ite
she requestedrigure 3 shows a menu and dialog from Search Party, a membership directory
application bat violates this rule.

Best Practices for User Interfaces 7

Big=ee@™ Find Favorites
Show All Entries FS

Directoiy Lists... }

Last Entry

Organize Saved Directory Lists

Please select one iter from the list below and then click a button to display the saved
information, assign a new name to the itern, or delete it from the list.

Class of 1974 Display
Rename

Delete

Pl

Close

Figure 3. In Search Party, an application for membership directories, choosing Directory
Lists from the menu opens a dialog titled "Organize Saved Directory Lists." While a little
thought makes it clear that this is the right item, the choice of a form title other than the
menu option leads to a moment of uncertainty.

Simplicity

This may be the most difficult principle to a
make things as simple as possiliet no simpler. Clearly, making things more complex than

they need to be is a bad idea (except in games or for Rube Goldberg devices). But why is making
things too simple an equally bad idea?

Simplicity comes at a price; you have to trade something tib, getnerally power, control or
flexibility. For example, consider television remote controls. Some include a numeric keypad, on
which you can type the channel number you want. Others omit the keypad, resulting in a simpler
design, with fewer controls. kieever, on those remotes, you can only change one channel at a
time, going up or down through the available channels.

Best Practices for User Interfaces 8

Error -tolerance

Humans are imperfect, but most software expects them to be perfect. This principle asks you to
throw away that expectatioAssume that users will make mistakes and make the consequences
of mistakes as painless as possible.

The recycle bin is one attempt by Windows to save users from themselves. By keeping deleted
files available until the user explicitly disposes of theme, user has one layer of protection. The
Undo functionality available in many applications is another example.

On the other hand, the sequence of confirmations many applications require for dangerous
actions does nédoleramce Hjust dgrs thef developer arr excase when the user

moans over lost data. While confirmations seem like a good idea, the problem is that users come

to expect them and respond automatically. Confirmations can be useful for extremely rare

actions that are dangerosyt f or nor mal activities such as

The human capacity for error should also be considered when placing menu items and buttons.
Users will land on the wrong menu item or click the wrong button. Keep destructiveaieys

from common items. The shortcut menu for Windows Explorer includes a bad example. Delete,
a dangerous action, is immediately adjacent to Rename, which for me, at least, is a common
action. | often hit Delete when | want RenarRigure 4 shows how easy this is with the mouse.
Note that the tip of the mouse pointer in the figure is right at the border between the Delete and
Rename items; you only have to be a few pixels off to choose Delete rather than Rename. A
better design for this menu would put Delete by itself with divider bars on both sides.

Collapse

Explore

Open

Browse with Paint Shop Pro Studio
Edit with CuteHTML

Search...

Sharing and Security. ..
2 WinZip »

Scan with Norton AntiVirus
Send To 4

Cut

Copy
Paste

Delete
Rename N

Properties

Figure 4. I n Explorerés shortcut menu, itéds easy t
It would be safer to have Delete in a group by itself.

Best Practices for User Interfaces 9

Best Practice: Expect users to make mistakes.

Accessibility

A significant number of people have one or more physical disabilities and, as the population

ages, the percentage goes up. For the year 2003, the US Census Bureau estimates there were over
77 milion Americans (about orguarter of the US population) with a disability severe enough

to impact their daily living. Failure to consider these people in designing user interfaces is a

serious mistakerortunately, in most cases, ensuring that users watbiities can work with

your applications leads to good interface choices for all users.

The disabilities that affect user interfaces are primarily problems with vision, mobility or

hearing, with vision the most common. Vision problems fall into threadcategories: no

vision, limited vision and color blindness. Clearly, making an application accessible to users who
cannot see is tricky, but most blind users have additional software that reads the screen to them.
For those users, you just need to msikee that your interface provides the right kinds of
information to the screen reader tools.

For users with limited vision and those whoarecbldri nd, the first step i s
Windows settings. People who have vision impairments ary i&@ehoose colors and fonts that
enhance their vision. Your application shoul d

gives users a way to set the font size within your application.

Best Practice: Respect the useroés Wi ndows

Peoplewith mobility issues may be unable to use a keyboard or a mouse, or may have problems
using either with precision. (The most seriously affected may use only a blow stick for input and
use their pointing devices with an-eareen keyboard.) For theseusersi t 6 s essent i al
options can be selected using either the keyboard or the mouse, so that whichever device a user
can control suffices.

Best Practice: Make all options available using either the keyboard or the mouse.

Hearing problems pose lessaof issue in user interface design, but make sure that nothing in
your application requires the ability to hear
alternative visual signal as well.

Standards and guidelines

There are a variety of standaiffds user interface behavior. Among the best known are those
published by Microsoft and Apple.

Best Practices for User Interfaces 10

Foll ow existing standards and guidelines unl e
acceptable to ignore standards in order to do something revohytibyaa to ignore them in
small ways.

The physical world is full of standards that make everyday life easier and safer. For example, the
gas pedal of a car is on the right with the brake on the left; deviation from this standard would be
dangerous.InNant Ameri ca, most | ight switches use up
parts of the world, the reverse is true. International travelers often find themselves fighting with

the light switches until they adapt.

Although user interface standards may aletays be the most logical (wlyCtrl+V the menu

shortcut for Paste, anyway?), users already know them. Violating them will annoy your users.

For example, early versions of WinZip used Ctrl+A as a menu shortcut for Add. For Windows

users accustomedtorCt + A6s standard meaning of Select Al
The makers of WinZip obviously heard complaints because later versions use Ctrl+A for Select

All and Shift+A for Add.

Does this mean you canot istimgeapplicdtonsaOf goturdeinat.g di f
If everyone did so, user interfaces would never change. If you have a new and better way to do
somet hing, go for it. But dondt ignore standa
behavior; youkyowsers wonoét than

Best Practice: Follow existing standards unless you have a compelling reason not to.

Putting the principles to work

With the basic principles in mind, you can get down to the-gitityy of actually designing and
implementing a user interface. Soofehe practical issues are direct reflections of the basic
principles, while others require you to think about how the principles apply.

To demonstrate these ideas, I've created an application for a library that incorporates borrowing
and returning boak managing members, looking things up in the catalog and maintaining the
catalog. The application, which is a work in progress, is included in the session materials.

Application-wide issues

Some design choices apply to the user interface and the appliaata whole. Make these
decisions before you begin designing individual components.

Use task terminology

There are two aspects to using task terminology in an application. One is the whole point of view
of the application, the way it looks at the woflthe second is the choice of terms used to refer
to the things the application deals with.

Best Practices for User Interfaces 11

The first concern with task terminology is about the approach you take to presenting an

application. From a devel oper 6sonpformifoteachf vi ew
table in an application and then put all those forms on the menu. When you do that, though,
youbdbre exposing the applicationdés innards.

A good user interface instead presents the user with a set of tasks that reflect the process being
modeled, not the model used. For example, Quicken is organized around different types of
household accounting tasks; the main menu is shoWwigure 5.

%Z Quicken 2001 Deluxe - Qdata - [Banking]
File Edit Finance Banking Inwvesting Household Taxes Planning Reports Help

Figure 5. Quicken's main menu lists the types of household accounting tasks its users
may want to perform, offering no indication of how the data for these tasks is actually
stored.

Note: Many user interface experts believe that the whole hierarchical directory structure
used 1 n «togsgsiemssis ao gxample of exposing the implementation rather
than considering the userdds goal s.

The second aspect of task terminology is the choice of actual words you use. Every field has its

l ingo, known as Awor ds odtotlerfigldand corrmon wordsiusedg b o't
in a special way. AAssumptiond means somet hin
a scientist. A musician, a mathematician and a psychologist each have different associations for
the word Atriangl e. o

Not orly do different professions have their own languages, but individual companies may have
their only way of referring to things or processes. Sometimes the choice of terms varies
geographically. For example, in California, the final step in buying a hoeséied the "escrow
closing," while in Pennsylvania, it's the "settlement.”

ltds i mportant for an application to use the
consistent way. | learned this lesson the hard way many years ago. | wroptieatiap that

essentially provided a fromnd with search capability for a fixed set of data. The application

allowed users to specify terms that must appear in the search result. On the main form of the

application, |l includediaobuctookihgttbeatdbis
title of ASearch Criteria. o When I demonstrat
criteria?0 16d used a term | was comfortabl e
audience.

The best way to get the fAwords of arto right:
they use for the objects and processes your application needs to deal with and use those terms
throughout.

Best Practice: Work with the users to define #ile terms that will be used and then us
them consistently.

*2J
D

Best Practices for User Interfaces 12

Use language well

Words of art aren6t the only concern in an ap
In general, you want to follow many of the rules that apply for writing.

Checkspelling carefully. Misspellings in your interface confuse users and lower their
perceptions of your application.

Be grammatical. Although most aspects of a user interface don't use full sentences, do check for
subjectverb agreement and other standarcgsudehe language. Use the right part of speech.

Use parallel form for items in lists, choosing the same grammatical form and tense for each item
in the list. For example, if the caption for
days ., 6d desre ATerms are Net 60 dayso for anot he

Avoid ambiguity. Not only did my fiSet criter:i
two different ways, based on whether fAseto wa

Use color wisely

The use of color in applications is somewhat controversial. No sooner did we reach the point
where most users had color monitors than Windows came along with its recommendations for
minimal color. What are the issues with respect to color?

Color is aneasy way to make things stand out. Making one item red in a form full of black on

white ensures that the user will notice that item. Cotmting is a very powerful mnemonic. The

decision by computer manufacturers to color code the cords and connectassimbling

personal computer§igure 6) has greatly increased the number of people who can put together

their own machines. The decision by networks in the United States to represent Republicans with
redandDemcr ats with blue on election maps has ma
immediately recognizable.

Best Practices for User Interfaces 13

Figure 6. Computer manufacturers color-code connectors and cables to make it easier
for people to assemble computers.

However, a significant portion of the population (about 10% of Western men) has some form of

color blindness. People who are color blind c
seems like good contrast to you may present little or no contrédmrto Subtle differences in
color may be totally meaningless to them. Bey

group whose vision is weak. Contrast can be an issue for these users as well.

Color is also an emotional issue. People respond to esloerally. This is apparent from the

way we refer to color in the | anguage (Al ém f
a color a user dislikes may evoke an unconscious negative reaction. Along the same lines,

different colors have differg meanings in various cultures. For example, in the West, white is

Best Practices for User Interfaces 14

the color of purity, used for wedding gowns, but in some Eastern cultures, white is the color of
death.

Color can also be overused. When evimksiiy. hi ng i
Figure 7 is a form from a vertical market application (with a few things changed to disguise it).
Thereds no apparent meaning to the different
colors.

¥ Patient Information

Patient Information

Billing: s | Chart Mo: | Health Mo: 9332735?093 —
Last Mame: [SaMPLE First: [Ma 1 Middle: il
Address 11 (7382 MONSOON ST,) | Phonet1: [306|[sss-1212] |Brévious
Address 2: 7 7 ‘ Phone 2: 0 1 E 0 Bottom
City: SASKATOON Prov: sk | Code: |a3a 989 |BirthDate: |12(12}1955
Gender: F | Fam. Doctor: | i i Top
Allergies: 7
Find
Next of Kin
2 = = : _ Add
Last Name: | SAMPLE First: NOTHA Relation: Patient
Address 1: 7382 MONSOON ST, 1 D Edit
L J Phone 1: /306 555-1212 | Record
Address 2: Lt —|
) - = e ~ __Phone2: | @ B | oot
City: SASKATOON Prov: |5k | Code: |A3A9B9 __§ | | Beete
This Patient's Record | § ¢ | Office Motes | o
was Closed on: L ! | Exit
Email: [hatll|

Figure 7. The apparently random use of color on this form from a vertical market
application leaves the user wondering what the meanings are.

So whatoés the solution? How can we use col or
users at a disadvantage or creating a garish mélange?

The first step is to follow the best practice
Users have chosen their Windows theme for a r
andsomeétmes itds to ensure visibility. Whichever

those preferences.

The basic principle of consistency provides the next guide here. Use color consistently
throughout your application. The application from whiefure 7 is drawn not only applies
colors without meaning, but different forms in the application use different colors with no
apparent reason.

Make colors meaningful. Use color to emphasize similarities and differences, not jlestsapr
your forms. Work with users as needed to discover the items that call for this type of emphasis.

Best Practices for User Interfaces 15

In addition, consider this use of color an enhancement, not an essential part of your application.
That is, whatever youobtrhee rdeodisn ga nwitthhe rc owaoyr ,f omma
same information. While the plugs on the backs of computers arecomled, they also have an

icon or text to indicate what should be attached.

Use color sparingly. Too much color leads to overload for the.uSaesitem in redirawsyour
attention; 10 items in red are a distraction.

Finally, while emphasizing with color can be powerful, be aware that some users will assume
that only the emphasized items are important and will ignore the rest.

Best Practice:Us col or sparingly and meaningfiul |l vy,

How can you follow all this advice in a VFP application?

1 For the ColorSource property of forms, use either the default settirgvaridiows
Control Panel (3D colors) orW/indows Control ParigWindows colors). Use the latter
setting if youodre treating forms in your a
ADIi stinguish documents and dialogso | ater

1 Leave the ColorSource property of your base class controls at thdt dét&\Windows
Control Panel (3D colors).

T I'f you put dAwa

| | papero on your applic
so it doesndot distr t

ation

act the wuser, or hat t
1 For situations where something out of tidioary is needed, such as drawing attention

to a particular control, draw the colors vy

GetSysColor API function to find the colors currently in use. The function is easy to use.

The code irListing 1 shows the constant declarations and the function declaration. To

use the function, just call it, passing the appropriate constant. Keep in mind that API

functions are casgensitive, so you must reference the function aSy&€olor with the

embedded capital letters. For example, the CheckOut form in the example Library

application has some controls that are there for reference only and always disabled.

Because disabled controls are hard to read in a number of themes arstlteines, the

form uses the AppWorkSpace color and the Window color for the disabled forecolor and

disabled backcolor, respectively, ag-igure 8.

Listing 1. You can find out what colors the user has chosen in Windows using the
GetSysColor API function.

#DEFINE COLOR_SCROLLBAR 0
#DEFINE COLOR_DESKTOP 1
#DEFINE COLOR_ACTIVECAPTION 2
#DEFINE COLOR_INACTIVECAPTION 3
#DEFINE COLOR_MENU 4

#DEFINE COLOR_WINDOW 5
#DEFINE COLOR_WINDOWFRAMB
#DEFINE COLOR_MENUTEXT 7
#DEFINE COLOR_WINDOWTEXT 8

Best Practices for User Interfaces

16

#DEFINE COLOR_CAPTIONTEXT 9
#DEFINE COLOR_ACTIVEBORDER 10
#DEFINE COLOR_INACTIVEBORDER 11
#DEFINE COLOR_APPWORKSPACE 12
#DEFINE COLOR_HIGHLIGHT 13
#DEFINE COLOR_HIGHLIGHTTEXT 14
#DEFINE COLOR_3DFACE 15

#DEFINE COLOR_3DSHADOW 16
#DEFINE COLOR_GRAYTEXT 17
#DEFINE COLOR_BTNTEXT 18
#DEFINE COLOR_INACTIVECAPTIONTEXT 19
#DEFINE COLOR_3DHIGHLIGHT 20
#DEFINE COLOR_3DDKSHADOW 21
#DEFINE COLOR_3DLIGHT 22
#DEFINE COLOR_INFOTEXT 23
#DEFINE COLOR_INFOBK 24

DECLARE INTEGER GetSysColor IN WIN32API INTEGER nElement

1" Check Out

Member number]g&s&ggagaﬂf Member]Abramson,Jeff

Firstname | Jeff Last name],»'i,t:-lr;arrual:.ln \
Address |3 Morte Road ~ | Phone
Philadelphia, PA 19153 S
b
Book barcode | .
Title Author

[£

Figure 8. This form draws colors from the current theme/scheme to make disabled

controls more readable.

Best Practices for User Interfaces 17

Use scalable fonts

Just as Wi ndo ws Otheycarealss makesfonelase@ choiceso The most,

important from the application development perspective is the DPI setting that determines how
fonts are drawn. (I'n earlier versions of Wind
font so eadfdnfilsador;g in Windows XP, users can make
As |l ong as you use scalable fonts, | arge font

nonscalable font (such as MS Sans Serif), captions and controls may be cut off for users with
large fontsFigure9s hows t he mai n wi -AwWaewithoMndolvasetdousef t 6 s 7/
large fonts; part of the information is cut off.

* Ad-Aware SE Personal

- B[]

/ = A . = . o),y N o 2 & P i
FACI=MRAVVCII © OC \h@l vil .'Jj ‘1
[Copyright 1999 2005 Lavasoft Sweden: All rights reserved. ~ < =< = ~
2] Statcs Ad-Aware SE Status L
T Initialization Status
_.—J = .

X Ad-Watch status Mot available Click Here To Upgrade

Gy Ad-Watch + Definitions file SE1R75 15.11.2005 Loaded Details

Usage Statistics Reset
(3 Auo:ons) Last system scan 11-17-2005 2:23:40 PM
Objects removed total 1]
Total Ad-Aware scans 1
©) Help) Objects in ignore list 0 Open ignare list
Objects guarantined 1] Open guarantine list
LIV PR pay gy Sy | [agra MY YR Py g | [SN PR ZNRTRTS P e
Ready e —
Ad-Aware SE Personal, Build 1.06r1

Figure 9. Apparently, Ad-Aware uses a non-scalable font, as part of its display is cut off

when Windows is set to use large fonts.

Following this advice in VFP is simple. Make sure the FontName setting for your base form and

control classes specifies a scalable font.

Make your application easy to use with both the keyboard and the mouse

Watch a number of

peopl e

work with a computer

they do with the keyboard and what they do with mouse. Some type everything possible and
resort to the mouse only occasiipaOthers use the keyboard only for text input and do all
selection and editing tasks with the mouse. Still others work in the middle ground between these

alternatives.

Similarly, if an option is available through the menu, a menu shortcut, a toolbar apt a
shortcut menu, different users will access it differently. In fact, the same user may access it

di fferently at di

fferent

times, depending on

Best Practices for User Interfaces 18

Beyond the normal variations, some users find one type of device muchteasier

Someti mes, the issue is a permanent motor dis
as a broken arm. Sometimes, the cause 1isnot t
keyboard or a switch from a desktop machinetoalaptopmaycge a user 6s keybo
mouse habits.

All of these issues lead to the best practice stated earlier: Make all options available using either
the keyboard or the mouse.

This best practice 1isndét hard to i mplement in

Give every menu item a hkey. Give commonly used menu items shortcuts, as well.

Make sure that TabStop is True (the default) for every input control. It is okay to set

TabStop to False for controls used only for display.

I f an item is on a t ool drmenysomeahere, aswelt. e t hat
Take advantage of the buiit menu items, such as those on the Windows menu.

)l
)l
1
1

The one item you donét need to worry about he
totally unable to use a keyboard, you can assume hachass to an escreen keyboard tool
that can manipulated with a pointing device. (In fact, Windows includes one.)

The hardest issues on this front are situations where the user needs to point to some place on the
screen. But there are generally solusion even i f theyoére a |little av
VFP 8, the only way to select an item in the VFP Report Designer was with the mouse. In VFP 8

and later, you can tab through the controls in a report.

Remember so the wuser doesnot have to

Computersare great at remembering things; with the increased storage capacity of current
machines, this is truer than ever. People are
something theydve done many t i meakeamstkerSe, it 0
one of your goals for the user interface should be to minimize what the user needs to remember.

Applications can remember all kinds of thidge/hat the user did last, how a particular user
likes things set up, the most common entries foardicular field, and much, much more.
Making your application remember, though, takes advance planning.

Existing applications vary in their use of memory. In fact, even within an application, there can

be variations. For example, when you open a doctmeMicrosoft Word, it shows the same

view you were last using. On the other hand, in other places, Word rapidly forgets. One that

drives me crazy is the CroBeference dialogrigure 10). When you choose a difient type of

reference to insert (using the Reference type dropdown), the content to be inserted always reverts
to AEntire captiono. Since | often insert sev
into a document and never inserttheente capti on, Wordbés insistenc
frustrating.

Best Practices for User Interfaces 19

Cross-reference
Reference p;pe: 7 Insert reference to:)
lFigure R |Entire caption v

Insert as hyperlink

For which caption:

Fiure 1. The “hutterfly ballot” used in Palm Beach County in th...

|Figure 2. This tiny toolkit is opened by pressing in at the seam b..
|Figure 3. In Explorer’s shortcut menu, it's easy to click Delete w...

[Insert] [Cancel l

Figure 10. When you change the Reference type in this dialog, the Insert reference to
dropdown always reverts to Entire caption.

VFEFPOs i nterf ace otrememberqpg Windewwsapeg wherd yoy leftithem and

when you open a code window, the cursor is where you left it. Even better, VFP gives you
control over this behavior through the SET RE
nice touch. You can reammge the windows, add breakpoints, change settings and so on to your
heartdés content, but choose Window | Restore
i s put back to its fiout of the boxo state.

What can your application remember?

1 Window positims and sizes
1 Settings/preferences

1 The record(s) last edited in various forms

1 The most common selections and entries for various fields

1 Most recently used items

How can your application remember? The answer varies with what there is to remember. The

easiecs t hing to remember is the most eompet®en entr
functionality lets you build memory into textboxes simply by setting a few properties.

To remember other items, youdll hhadvae articlein b ui | d
the January, 2000 issue of FoxTalk that showed how to store information such as window
positions and the | ast edited record. |l td6s ea

Once you do so, you can store whatever informatenwant and restore it as needed. A
refactored version of this capability is included with the session materials.

Best Practices for User Interfaces 20

Provide Undo

One of the best practices discussed with the general principles is: Expect the users to make
mistakes. One way to do so is tmpde undo functionality. A weltlesigned undo capability
can eliminate some of the generally ignored confirmation dialogs.

VFP provides a basic undo facility. As long as you include the Undo menu item (_med_undo)
somewhere in the menu, you can undongpit works in textboxes and editboxes, as well as in
various windows unlikely to be used in applications, such as memo windows, code windows, and
so forth. However, in forms, it works only within a single control; as soon as you leave the
control, you canot undo typing there, even if you return focus to that control.

ltds also not hard to write code to provide a
values stored in the table. Just call TableRevert() for each table and then refreai.the fo

V F P 0 sstep deletion process also offers a type of undo capability, since it makes it possible
to restore deleted records.

A more comprehensive undo facility, that tracks application actions, and provides a general way
to return to an earlier stat@puld be an extremely powerful addition to any application.

Application Control and Menus

Most database applications use a menu bar as
good choice, since users of business applications are famitiathis approach. In some

situations, other approaches may make more sense. For example, a kiosk application for a public
place is better served by an opening form (a switchboard form) that uses buttons to direct users

to the main portions of the applicat. Even in a business application with a menu bar, such an
opening form can be very helpful to new users. In that case, it would duplicate the menu choices
rather than replacing them.

Beyond the menu bar or switchboard form, there are a number of vadkbée for application
control. Toolbars and shortcut menus provide users additional ways to access options.

Organize the menu bar sensibly

The first issue in designing the main menu for an application is deciding what menu pads to use,
thatis,howyos houl d organi ze the options of the appl
goal s. While the menu should probably include
expectations, dondt make the otherhepads For ms
application domain. For example, in an application for managing a library, the pads might

include Circulation, Reference and Collection. Each menu pad then includes the actions related

to that aspect of a library, askigure 11.

Best Practices for User Interfaces 21

IFiIe Edit Circulation Reference Borrowers Collection Window Help

Figure 11. This main menu for a library application is organized around the main areas
of responsibility for the librarians.

Best Practice: Organize the menu around th

Each menu pad, of courdeads to a menu popup, containing the items related to that pad.

Within the popup, you have several choices as to organization. One option is to list the items in
the order in which theyodore |ikely to d® used,;
Another choice is put items in frequency order, with most often used items at the top.

Whichever organization you choose, use divider bars in popups to separate items into meaningful
groups. The dividers make it easier to find the desired item,adeéihto click on the wrong
item by accident.

Therebds gener al agreement among usability res
item contains a submenu, which may in turn contain a submenu) are harder to use than flat
menus. On the other hand,toamy i tems in a single menu popup

probably best to use no more than one level below the menu popup; that is, the popup contains
items, which may contain submenus, but the submenus do not contain submenus. To avoid
overloading thendividual popups, consider using dialogs called from the menu. For example,
choosing For mat | Fonté in VFP opens the Font
containing Font Name, Font Size, and so forth.

It may be tempting to put some items in more tbae place on the menu. When the same item
appears more than once, users try to understand the difference between the two. Resist the
temptation and view it instead as a sign that your menu organization needs revision. However,
putting an item on the merand a toolbar, or on the main menu and a shortcut menu is not a
problem.

Provide hot keys and menu shortcuts

Windows menus offer two different mechanisms to simplify keyboard use: hot keys and
shortcuts. Offer both in your applications to speed more addamsers.

Menu hot keys are the underlined keys that appear when the menu has focus (and always appear
for menu pads in some versions of Windows). They allow users to navigate using the keyboard,
without having to use the arrow keys. For example, C ibdhé&ey for Copy on the Edit menu.

Menu shortcuts are the key combinations that appear at the end of menu items and allow users to
choose the item without opening the menu. For example, Ctrl+C is the menu shortcut for Copy.

In VFP, both hot keys and shouts can be specified using the Menu Designer. To set a hot key,
precede the chosen \dcoet(toemi totfi n ¢h Eiguneel20fopat ensi)t ,h &
specify a shortcut, use the Prompt Options diakigufe 13) t hat 6 s accessed t hr

Best Practices for User Interfaces 22

Options button for each item in the Menu Designer. Click into the Key Label textbox and then
press the key combinati on vy okeycomabmationfoomenus e .
pads and Ctrkey combinations for menu bars. In the Key Text textbox, you can specify how the
shortcut should be displayed on the menu. The shortcut appears at tiandlside of the

menu popup.

& Menu Designer - librarymenu.mnx

Preview

Prompt Result Options Menu level:
| |Submenu v | [Edit] S]Menu Bar e ‘
C] \<Edit Submenu v
C] \<Circulation Submenu Vv tem
D \<Reference Submenu v
D \<Borrowers Submenu Vv P
D Co\<llection Submenu v HbRikET
(] \<Window Submenu v
E] Y<Help Submenu Vv

|

=

Figure 12. Use "\<" in the caption of an item to specify a hot key.

Best Practices for User Interfaces

23

¥ Prompt Options

()otiate

Shortcut

Key Label: |CTRL+C

Key Text |Ctrl+C
Skip For:
Message: "Copies the selection onto the Clipboard"
Picture:
() File (%) Resource

‘V_med_copy

Bar#:

Comment:

()

L
[

Figure 13. Use the Prompt Options dialog to specify a shortcut for a menu item. The
Key Label textbox contains the name of the key; the Key Text textbox indicates how it

will be displayed on the menu item.

Best Practice: Give every menu item a hot key.

Every item within a menu popup should have a unique hotkey. How do you choose the hot key
t em?

for each menu i

| f
Use the first letter of the prompt.

Thi s pr GOdlBlodpdrsz e d

t & Windews standard hot key for an item, use it.

| i st

Use a consonant from the prompt, preferably one that is pronounced rather than silent

Use the first I

1
1
1 Use the first letter of another word in the prompt (sticking to the meaningful words).
1
1

etter in the

prompt

t hat

Best Practice: Give frequently used menu items shortcuts.

You donot need a

shortcut

for every

menu i

better not to provide shortcuts for pamtarly destructive menu items. Here are some guidelines:

i s

A

0s

tem

1 Give each menu pad a shortcut, using Alt + a letter. If the pad is widely used in Windows

menus, use the usual hotkey.

Best Practices for User Interfaces 24

T Provide shortcuts for fAstandar do soferthhu i t em
Use the standard shortcuts for those items.

1 Provide shortcuts for menu items users will need frequently. Us&e&Stdombinations,
making each combination unique across the application.

Clue users in about menu itemsd behavior

Some menu itemsraply perform an action; for example, Edit | Paste pastes whaseorithe

clipboard at the cursor position. Other items open a dialog to collect more information before
acting; for example, VFPO6s Program |uteDoé ope
When a menu item opens a dialog, put an el |
convention tells users that a form will open.

n
P

Including the ellipsis makes it safer for users to explore the application. When a menu item ends
with an dlipsis, the user knows he can choose the item to see what appears without actually
triggering an action.

Manage usersbaccess to menu items

Application actions can be divided into three groups for any user: those he can always use, those
he can sometimasse, and those he can never use. Manage the menu to make the distinctions
clear to users.

Disable items when theyobére not available at t
menu commands lets you handle such items. Use application propertiehodsrettrack a
particul ar us eirniesu itarts,dike C, Copy¥ dn@ Pastay hahdte enabling and

di sabling automatically, so you dondét have to

Donét show a user menu items he c administratveer c¢c ho
users can access the Human Resources modul e,
frustrating and tempting to them. While VFPOG6s
items, the public domain tool, GenMenuX, makes it easy ®od¢GenMenuX is included in the

materials for this session.)

Best Practice: Donot show a user mend iIten

The exception to this rule is in trial versions of an application. There, you may choose to disable
some options; in such casesnassage should indicate that this option is available in the full
version of the product.

Use toolbars as mouse shortcuts

Toolbars are to mouse users what menu shortcuts are to keyboaéd aisglisk way to access
the most frequently used items in an amilon. Keeping this rule in mind makes it easy to

Best Practices for User Interfaces 25

decide whether or not to use toolbars in an application and which items to put on toolbars. For
the most part, iIitdéds the same items for which

Everything on a toolbar shouldbeai | abl e on the menu as well . O
to mouse users, not to those working from the keyboard.

Use separators to divide the items on a toolbar into logical groups. Separators serve the same
purpose in a toolbar that lines do in a m@rnhey help users see the items and make it easier to
land on the right one.

Use graphical buttons and checkboxes on toolbars and do not include a textual caption. Instead,
give every item on the toolbar (except separators) a tooltip. Tooltips shoul@beibe or two

words. If you need a whole sentence or paragraph to explain what a toolbar button does, perhaps
itds not really a good candidate for the tool

Use the same icons on the toolbar as in the menu. That helps users learn what an icotsrepresen

Toolbars are not intended to contain input controls, like textboxes. While you can make them
work, including them violates the basic idea that a toolbar is a set of menu shortcuts.

Best Practice: View toolbars as menu shortcuts for mouse users.

Large and small toolbars offer users more control

Toolbars can be very handy, but the traditional size of toolbar buttons can make it hard to
interpret the icons and to hit the right button. Making toolbars larger uses valuable screen real
estate. One good compnise is to offer both and let users decide.

Some applications that offer both large and small toolbars use the same icons on both. Others use
more detailed icons on the large toollFgure 14 shows the small andrge toolbar in WinZip;

y ¥ 7
Newy Open Favorites Wizard

New Open Favorites Wizard
Figure 14. WinZip lets you choose whether to use small or large toolbars. The icons on
the large toolbar have much more detail, yet are far more visible.

Il tds not terri bl y Heaolbdrsih 6FP.prheanateridle for ths segson and s
include a toolbar class and classes for command buttons, checkboxes, and option buttons that can
switch between large and small. The most difficult aspect is likely to be finding icons in both
sizes,bute me t ool s are available that | et you resi
Editor for this task.)

Best Practices for User Interfaces 26

Shortcut menus provide another alternative

Shortcut menus offer another way to make menu options available. These menus, also known as
context mens or rightclick menus, appear when the user Hgltks, presses the shortcut key

on the keyboard or presses Shift+F10. Typically, shortcut menus contain just a few items chosen

for their relevance to whatever the user is workingragure 15 shows the shortcut menu
available in VFP6s code editing windows. |t h

&
& Paste

Build Expression...
Do Programi

EE List Members
k= Quick Info

AFont...
#Find...
Go to Line...
JaView Definition
Look Up Reference...

EBeautify...
= Indent

uti

ZUnindent
= Comment
2 Uncomment

' Properties...

Figure 15. This shortcut menu, available in code editing windows in VFP, is longer than
most.

Well-designed shortcut menus can help users learn what an application can do. Some users right
click everywhere when | earning an application

Be consistent in your use of short cachoosertoenus.
provide them, then do so uniformly. If one data entry form offers a shortcut menu, all forms
should.

At the same time, shortcut menus should only contain items relevant to the current situation.
Doné6ét create a si ngl eletroughott gourtapploaionuinsteanl createk e a
separate shortcut menus for different situations.

Best Practices for User Interfaces 27

Organize shortcut menus with most frequently used items at the top to make navigation as easy
as possible. The exception to this rule is for dangerous iteals it hard to select these by

accident or omit them from shortcut menus. In VFP, shortcut menus open with the first item
selected. Be sure that accidentally choosing

As in other menus, use lines to separate groups of itedaet off dangerous items.

Every item in a shortcut menu should appear on the main menu, as well. Use the same icon for
the item everywhere it appears.

You can create shortcut menus with VFP6s Menu
Menu dialog Figure 16) that appears when you create a Menu.

¥ New Menu
E || B,

Menu Shortcut

Figure16. Choose Shortcut in this dialog to creat
generator program, GenMenu, generates a single popup that appears at the mouse
position.

Shortcut menus are generally open by Hgitking on the relevant object. However, most
keyboards also offer a key to open the shortcut menu; in addition, in most applications,
Shift+F10 also opens the shortcut menu. It'y ¢éaiook your shortcut menus into the

RightClick method of the relevant controls. However, you need additional code to allow users to
access shortcut menus from the keyboard. Checking for Shift+F10 in the KeyPress method
catches both that key combinatiand the shortcut menu key.

Forms

For most applications, forms are where users spend the modt éidieng and modifying data,
t hen examining and organizing it. So itdéds i mp
about the task at hand.

The man tasks for database applications generally involve entering new data, looking up and
modifying existing data, and crunching data to get{targ results, trends, and so forth. The

amount of time users spend on each of these tasks varies with thetapplinasome (like

point-of-sale applications), the most common activity is entering new data, while in others (like a

l' i brary system), itéds |l ooking up or modifying
same application may spend much maneetiwith one aspect than another. For example, a

Best Practices for User Interfaces 28

cashier using a POS system enters lots of new data, and does little else, but the store manager
spends most of her time in the numbaunching portions of the application.

In designing the forms for an apgdition, you need to consider how often and under what
circumstances someone uses the form. A data entry form that needs to be filled in dozens of

times a day should be streamlined to allow hehdaswn dat a entry (where th
look at the scren). On the other hand, a form for performing meard or yeaend tasks should

guide the user through the necessary steps.

Forms have title bars

With few exceptions, every form should have a title bar that identifies its purpose. The caption
on the titlebar should reflect the menu item or button used to open the form. (See the

AFeedbackod section earlier in this document.)
information about the specific it ermpeitgsfos addr
a file in Windows Explorer, the Properties window includes the file name,Fagure 17. To

follow the Feedback principle, though, itds p
aftertheér m name, so APropertiesF Figuet7 vfp9. exeod is

Best Practices for User Interfaces 29

vfp9.exe Properties

General |Version | Compatibility | Summary

: / vip9.exe

Type of file: Application

Description: Microsoft Visual FoxPro 9.0 SP1

Location: DAFoxiVFPI
Size: 5.50 MB (5,775,360 bytes)

Size ondisk: 550 MB (5,775,360 bytes)

Created: Friday, November 04, 2005, 6:12:22 PM
Modified: Friday, November 04, 2005, 6:12:22 PM

Accessed: Today, March 22, 2008, 3:11:23 PM

Aftributes: [(JrRead-only [Hidden

[OK] [Cancel]

Figure 17. Choosing Properties for a file in Windows Explorer opens a window that
includes the file name.

Best Practice: Give everfprm except the splash screen a title bar.

The principal exception to the title bar rule is a splash screen, displayed to provide rapid
feedback on application starp and to give the user something to look at while the application
performs necessary staip tasks. Splash screens typically omit title bars and include the name
and version of the application, and other identifying information.

Distinguish dialogs and documents

Forms fall into two main categories, dialogs and documents. Dialogs let acasippli

communicate with a user. Sometimes the communication is one way, as with the most basic form

of the Wi ndows mes s anwgqe with thexdjalogocallecting informationi t 6 s t w
needed to perform a particular task. For example, the Font dialo§ P6s ver si on i s s
Figure18 | ets you specify font characteristics.
particular object. (This is another example where including identifying information would be
ueful; a title of AFont for xxx0 would add cl
then di smissed; theyodére al most al ways modal

Best Practices for User Interfaces 30

Font

Eront:A N Fpnt style: _ §i;e: 3
ICourier New | |Regular | |13
~ | EET ~
| B Croohie | ltalic | |9 '
| O Curlz MT | |Bold 10 ‘
| O Edwardian ScriptITC Bold ltalic 11 i
| O Elephant 12
| B English111 Vivace BT 14
| 0 Engravers MT N ‘ 16
Sample
‘ LRaBbYvyZz

Script:

Western v |
This is an OpenType font. This same font will be used on both your printer
and your screen.

Figure 18. The Font dialog lets you specify font settings for a particular item, though the
VFP version of the dialog doesnét tell you wh

Documents, also known as primary windows, are where the main action of an application takes

pl ace. I n some applications, | i kecomfostabledForand E X
database applications, describing data entry forms as documents may seem like a stretch, but in
fact, when you view them as the creation and modification of records, the analogy makes sense.
After all, Word is all about the creation anadification of letters, reports, labels and so forth.

Excel is for creating and editing workbooks. Documents tend to be displayed for long periods of

ti me and are never modal . Documents arendt an

Using the right windowyipe helps users understand their options. Use documents for your
applicationdéds main tasks and use dialogs for
developers do so, you can easily follow the Windows coloring guidelines for documents and
dialogs usinghe ColorSource property. Leave dialog forms setWiddows Control Panel (3D

Colors) and set documents tdMindows Control Panel (Window Colors). For example, the
CheckOut form for the Library application kigure8 is a doaiment, so it uses Window colors.

Data entry forms are not modal

Back in the old days, when a user opened a form, she was expected to do what she needed with
that form, close it and only then open another. FoxPro offered the possibility of opening multiple
forms at once and letting a user work with multiple forms long before it was the most dominant
paradi gm. Nonet hel ess, some developers stildl

Best Practice: Make data entry forms modeless.

Best Practices for User Interfaces 31

Veryfewuserswd i n an environment where the task th
by another, more pressing, task. A billing clerk may get a phone call from the boss, wanting the
details of | ast weekO6s order fromablemmaylge cust o

interrupted by a customer asking for shipping information on a recent order. Even environments
where we tend to think of the work asrepdur el vy
about a poinbf-sale application for supermarketet allows the cashier to put one order on

hold when thereds a problem and continue with

Even i f a user isndét interrupted by another t
order to perform the current task. W&hwe can design applications to make the most common

lookups available from data entry forms, we <cer
The bottom I ine here: A user should al most ne

go to another art of the application.

Keep dialogs to a minimum during processing

There are two kinds of dialogs in an application, the ones the user requests and the ones the
application generates. The user requests things like an Options dialog that lets him éséablish
way the application operates or a Print dialog to choose a printer and specify print settings. For
these windows, a dialog is usually a good choice.

Dialogs the application generates are an interruption; use them sparingly. Design your
application sdhat users can work fluidly. Interrupt them only for important things.

What constitute important things? Here are some examples:

T Hardware problems the application candt wo
1 Confirmation of seriously destructive actions (like erasinghalldata);

1 Keeping the user informed of progress for long tasks;

1 Letting the user select a file or folder.

What 6s just an interruption?

1 Confirmation of normal action, like deleting a single record;

T Telling the user what wadsveniuitsstellidgahe eserusn| e s s
only useful if she can do something about it);

1 Telling the user about an error the program can simply fix.

I n other words, alerts and confirmations shou
annoying becausbte y 6r e i nterruptions.

Second, they dono6ét really accomplish anything
ot her techniques. For example, VFP doesné6t sh

a program. Instead, the title bar of a cod#ig window contains an asterisk when there are

Best Practices for User Interfaces 32

unsaved changes, asHigure 19. When you save, the asterisk disappears. This mechanism
provides immediate feedback and eliminates the need for an alert.

Figure 19. Visual FoxPro indicates that code in an editing window has changed by
adding an asterisk to the title bar. When you save, the asterisk disappears. This
feedback avoids the need for an alert on saving the code.

Other applicatins use other techniques to avoid alerts. In Microsoft Word, when you save a file,
a disk icon briefly appears in the status bar. Most web applications use an asterisk or other
character to indicate required fields and then highlight missing items whaadhattempts to

save, rather than displaying a separate alert.

The Library application puts messages directly on forms rather than using alerts to tell the user

about problems or provide additional informatibigure 20s hows t he | i brary apr
form for checking in books; when it receives an invalid barcode, it shows a message right on the

form, rather than using a messagebox.

