
Session SMF303

Best Practices for User Interfaces

Tamar E. Granor, Ph.D.

Tomorrow's Solutions, LLC

8201 Cedar Road

Elkins Park, PA 19027

Voice: 215-635-1958

Fax: 215-635-2234

Email: tamar@tomorrowssolutionsllc.com

The user interface is your application's appearance to the world. Throwing it together as an afterthought

is like putting on the first clothes you grab from your closet. In both cases, the result may or may not look

good and may or may not be appropriate to the occasion. This session will start from the top and dig

down into the mysteries of designing the interaction and interface of an application. After discussing why

user interfaces matter, it will provide best practices for both the design and implementation stages.

Although the code examples for this session use Visual FoxPro, the principles and ideas apply across

development platforms, though web development raises some additional issues not discussed here.

Why do user interfaces matter?

If it was hard to write, it should be hard to use.

-- Old Programmer Wisdom

The maxim above pretty much sums up the view of many software developers. They implement

user interfaces that reflect the underlying architecture of the application and donôt really care

how hard or easy the result is to use. Their response to userôs complaints is to tell them that they

just need to learn how it works. They rail about the stupid users who just donôt get it.

Is it just the users? Does it really matter what the user interface of your applications looks like

and how it works? Yes, interfaces matter. In fact, a bad user interface can have world-changing

or life-threatening consequences.

In the United Statesô Presidential election of 2000, Palm Beach County, Florida, used a ballot

design (Figure 1) meant to make it easier to fit all the candidates onto a double-page. The design

introduced confusion as to which hole to punch to vote for Al Gore. While normally such

confusion wouldnôt have mattered, in this case, the Florida vote was extremely close and the

roughly 20,000 affected votes were more than enough to swing Florida for Bush and change the

overall results of the election. (For a user interface oriented look at the butterfly ballot, see

http://www.asktog.com/columns/042ButterflyBallot.html.)

http://www.asktog.com/columns/042ButterflyBallot.html

Best Practices for User Interfaces 2

Figure 1. The ñbutterfly ballotò used in Palm Beach County in the 2000 election.
Although Gore/Lieberman is the second group shown on the left, you have to punch the
third hole to choose that ticket. Many voters punched two holes because they were both
next to Gore/Lieberman.

In the ensuing discussion, many people blamed the voters for their mistakes and the word

ñstupidò was thrown around. But when thousands of people make the same mistake, can they all

be stupid?

Bad user interfaces can cost lives as well as elections. A study published in the Journal of the

American Medical Association (http://jama.ama-assn.org/cgi/content/abstract/293/10/1197)

reported on 22 different ways a particular medicine order entry system led to medication errors.

Among the problems were default values that misled doctors as to appropriate dosages, having

data for a patient spread out among multiple screens, fonts too small for clarity and failing to

include the patientôs name on every screen for that patient. Doctors in the study group indicated

that errors occurred at least weekly.

There are other well-known examples of badly-designed user interfaces leading to death or

serious damage. For example, singer-songwriter John Denver died in a plane crash, at least in

part due to the planeôs builder choosing to put an important safety switch behind the pilot.

(http://www.asktog.com/columns/027InterfacesThatKill.html) In fact, almost every time an

accident is ascribed to ñhuman error,ò itôs likely some facet of a user interface led directly or

indirectly to the error.

As far as the customer is concerned, the interface is the product.

--Jef Raskin, Macintosh pioneer

http://jama.ama-assn.org/cgi/content/abstract/293/10/1197
http://www.asktog.com/columns/027InterfacesThatKill.html

Best Practices for User Interfaces 3

Beyond safety issues, a good user interface is a strong marketing tool. When users find a product

easy to work with and supportive of their goals, they become loyal, sometimes to the point of

fanaticism. They not only use the product themselves, but spread the word. Appleôs Macintosh

has benefited tremendously from this kind of loyalty.

What goes into building the kind of interface that makes users crazy about your product rather

than driving them crazy? As a developer, how can you help the people who use the applications

you create?

The answer has two aspects. The first task is to design an interaction paradigm that supports

rather than hinders users. A great deal has been written on this subject (see the Resources

section) and this document will take only a high-level look at the subject.

The second step is to make the right choices in creating an actual user interface to implement that

design. This includes choosing the right control for each task; remembering that the computer

belongs to the user, not to your application; supporting different work styles; keeping things

consistent; and much more. The bulk of this document considers these nitty-gritty issues.

Designing Interaction

When most people sit down in front of a computer, whether at work or at home, their goal is to

accomplish a particular task. Few of them care about how the data is stored, the internal structure

of the menu, or how reporting is optimized. They simply want to write a letter or update a

patientôs chart or order 14 dozen widgets or any of the myriad other things that software can do.

The purpose of a user interface, then, is to support them in accomplishing their goals.

Software developers, on the other hand, are generally fascinated by the details of how things

work. Weôre mostly the kind of people who take things apart to see whatôs inside and may or

may not bother to put them back together. We get excited by whiz-bang cool techniques and love

to show them off.

Not surprisingly, when software developers design interfaces, the result is a mismatch. Weôre

likely to design interfaces that reflect the architecture of the application rather than the tasks

users want to perform with it. The result is software thatôs frustrating for users and users whoôd

rather have their teeth pulled than use some applications.

The best solution to the problem is hard for management (and developers) to accept. Thatôs

having interaction designed by experts in design rather than by developers. While hiring user

interaction designers may be realistic for large companies and major applications, most of the

people who want software written are unwilling to invest either the money or the time to bring in

the pros. Thus most developers inherit the job of designing both the interaction and the interface,

whether they want it or not.

Best Practice: Design First; Code Later

Best Practices for User Interfaces 4

The first place most developers go wrong with user interfaces is by not looking at the big picture,

the overall plan for interaction in the application. Interface design is concerned with specific

controls, colors, screen layouts and so forth. Interaction design takes a much larger view,

addressing questions of functionality, paradigm and metaphor. Alan Cooper describes it this

way:

Look and Feel stuff is Interface Design. It's all very stylistic. It's the color that you paint

your walls. Interaction Design is about the Architecture. It's what kind of building are we

building. What functions does it support. What are the shapes of the rooms and the walls

and ceilings. What is the infrastructure. What kind of elevators. What kind of cooling and

heating. That's Interaction Design.

[http://www.uidesign.net/Articles/Interviews/AnaudiencewithAlanCooper.html]

Plan to design the user interaction before you start writing any code; once you start coding,

though you may not realize it, youôre locking in aspects of the way the application and its users

will interact. More importantly, designing interaction that works for users may affect the overall

architecture of the application.

The place to start is with users. As you collect the information needed to design the application,

listen carefully to what users tell you about their goals and the ways they use (or plan to use) the

application. Make sure to talk to actual users, not just their managers, who may be quite unaware

of how their employees actually work.

Once you understand what different users hope to do with your application, create a small

number of personas, fictitious characters who represent prototypical users. Personas have names,

biographies, and goals. Find photos to assign to them as well. In short, do anything you can to

make the personas seem like real people. Plan to have one persona for each major type of user of

your application. Generally, youôll need three to seven. (See

http://www.infotoday.com/online/jul03/head.shtml and Cooperôs The Inmates are Running the

Asylum for more on designing personas.)

Let the personas drive interface design. As you consider an approach to a problem, ask yourself

if it would make sense to Bob or Mary Jane. Would David feel comfortable working with this

form? Once you start designing for individuals rather than the abstract ñusers,ò youôre more

likely to really consider whether a particular design works. Itôs easy to say ñusers donôt want to

do x,ò no matter what x is, but when you ask whether Helen wants to do x, you have to actually

think about it.

Like other design processes, interaction design is an iterative process. Once you think you have it

right (on paper), you need to show it to users and let them react. Then, revise to address their

concerns.

Designing Good Interfaces

Once you have an interaction plan, you still have to design the user interface that implements

that plan. In Cooperôs terms, you have the house; now you have to decide on the floor coverings,

wall colors, furniture, lighting and so forth.

http://www.infotoday.com/online/jul03/head.shtml

Best Practices for User Interfaces 5

Basic principles

As you work on the design, there are a number of principles to keep in mind. (This list is adapted

from the writings of Cooper, Norman, Johnson, Raskin, and others.)

Consistency

This is a simple principle thatôs overlooked with surprising frequency. If something works one

way in one part of the UI, it should work the same way throughout. If you use a Close button to

leave one data entry form, another data entry form shouldnôt use an Exit button for the same

purpose.

Object-orientation helps enforce this kind of consistency, as you can create objects and use them

throughout an application. If every data entry form is to close with a Close button, create a data

entry form class that already has the button on it.

Consistency is important in the other direction as well. A word should have a single meaning in

an application. If you use ñwidgetò for one concept in one part of the application, donôt use it for

a different concept in another part of the application.

Visibility

This principle says to let users see what they can do. It may sound obvious, but with both

physical objects and software, there are a surprising number of examples of invisible options.

Figure 2 shows a small toolkit (a giveaway from some conference); opening it the first time is

not obvious.

Figure 2. This tiny toolkit is opened by pressing in at the seam between the lid and the
container. The only clue is the word ñPressò in dark ink on the dark lid. (The word is
present in this photo, but is unreadable.)

Visual FoxPro offers a good example of an invisible option. One of the most common questions

posed by developers upgrading to VFP 7 or later is how to keep the Command Window from

sitting on top of other windows. The solution is to uncheck the Dockable option on the

Command Windowôs toolbar. While the reasoning makes sense once you know the solution, itôs

so far from the perceived problem as to be hidden.

Best Practices for User Interfaces 6

The principle of visibility also means that a key combination or a function key shouldnôt be the

only way to trigger a particular action. It needs to appear on a menu or toolbar or somewhere in

the visible interface as well.

Best Practice: Make every option visible.

Of course, invisibility can be useful in certain situations. An undocumented hot key offers a way

to put a developerôs back door into an application, but be prepared for users to stumble onto it

occasionally without knowing how they got there.

Feedback

The principle of feedback states that users should get some indication that their actions were

noted and are being acted on appropriately. Feedback is so important to people that itôs often

explicitly added to devices. For example, people expect to feel something when they press a

physical button; devices where the buttons donôt actually move typically use a tone to indicate

that the button press was received. In fact, even some devices where the buttons do actually

move, like most telephones, provide auditory feedback.

Similarly, in applications, when the user does something, she needs to know that the application

ñheardò her. Feedback is needed at several levels. For example, when a user clicks a button, the

first kind of feedback is the visual movement of the button. That confirms that she succeeded in

clicking the button, rather than somewhere else.

The next type of feedback tells the user that the application understood the instruction implied by

the button. The actual feedback varies with the situation. For a New or Add button, other

controls on the form clear and the cursor is placed in the first field. For a Close button, the form

closes. Often, the feedback for a control is obvious. Sometimes, though, you need to add

feedback because thereôs no obvious choice or the action started by the user will take some time.

In that situation, you need to use something like a message or a progress bar. (The key, of course,

is to offer feedback that informs the user without impeding her.)

Feedback is also relevant when a button or menu option opens a form. The caption of the form

should match the buttonôs caption or menu item, so that the user knows the application did what

she requested. Figure 3 shows a menu and dialog from Search Party, a membership directory

application that violates this rule.

Best Practices for User Interfaces 7

Figure 3. In Search Party, an application for membership directories, choosing Directory
Lists from the menu opens a dialog titled "Organize Saved Directory Lists." While a little
thought makes it clear that this is the right item, the choice of a form title other than the
menu option leads to a moment of uncertainty.

Simplicity

This may be the most difficult principle to apply because itôs a judgment call. The goal is to

make things as simple as possible, but no simpler. Clearly, making things more complex than

they need to be is a bad idea (except in games or for Rube Goldberg devices). But why is making

things too simple an equally bad idea?

Simplicity comes at a price; you have to trade something to get it, generally power, control or

flexibility. For example, consider television remote controls. Some include a numeric keypad, on

which you can type the channel number you want. Others omit the keypad, resulting in a simpler

design, with fewer controls. However, on those remotes, you can only change one channel at a

time, going up or down through the available channels.

Best Practices for User Interfaces 8

Error -tolerance

Humans are imperfect, but most software expects them to be perfect. This principle asks you to

throw away that expectation. Assume that users will make mistakes and make the consequences

of mistakes as painless as possible.

The recycle bin is one attempt by Windows to save users from themselves. By keeping deleted

files available until the user explicitly disposes of them, the user has one layer of protection. The

Undo functionality available in many applications is another example.

On the other hand, the sequence of confirmations many applications require for dangerous

actions doesnôt really offer error-tolerance. It just offers the developer an excuse when the user

moans over lost data. While confirmations seem like a good idea, the problem is that users come

to expect them and respond automatically. Confirmations can be useful for extremely rare

actions that are dangerous, but for normal activities such as deleting a record, theyôre just clutter.

The human capacity for error should also be considered when placing menu items and buttons.

Users will land on the wrong menu item or click the wrong button. Keep destructive items away

from common items. The shortcut menu for Windows Explorer includes a bad example. Delete,

a dangerous action, is immediately adjacent to Rename, which for me, at least, is a common

action. I often hit Delete when I want Rename; Figure 4 shows how easy this is with the mouse.

Note that the tip of the mouse pointer in the figure is right at the border between the Delete and

Rename items; you only have to be a few pixels off to choose Delete rather than Rename. A

better design for this menu would put Delete by itself with divider bars on both sides.

Figure 4. In Explorerôs shortcut menu, itôs easy to click Delete when you mean Rename.
It would be safer to have Delete in a group by itself.

Best Practices for User Interfaces 9

Best Practice: Expect users to make mistakes.

Accessibility

A significant number of people have one or more physical disabilities and, as the population

ages, the percentage goes up. For the year 2003, the US Census Bureau estimates there were over

77 million Americans (about one-quarter of the US population) with a disability severe enough

to impact their daily living. Failure to consider these people in designing user interfaces is a

serious mistake. Fortunately, in most cases, ensuring that users with disabilities can work with

your applications leads to good interface choices for all users.

The disabilities that affect user interfaces are primarily problems with vision, mobility or

hearing, with vision the most common. Vision problems fall into three broad categories: no

vision, limited vision and color blindness. Clearly, making an application accessible to users who

cannot see is tricky, but most blind users have additional software that reads the screen to them.

For those users, you just need to make sure that your interface provides the right kinds of

information to the screen reader tools.

For users with limited vision and those who are color-blind, the first step is to respect the userôs

Windows settings. People who have vision impairments are likely to choose colors and fonts that

enhance their vision. Your application should use these settings. In addition, itôs a good idea to

gives users a way to set the font size within your application.

Best Practice: Respect the userôs Windows settings.

People with mobility issues may be unable to use a keyboard or a mouse, or may have problems

using either with precision. (The most seriously affected may use only a blow stick for input and

use their pointing devices with an on-screen keyboard.) For these users, itôs essential that all

options can be selected using either the keyboard or the mouse, so that whichever device a user

can control suffices.

Best Practice: Make all options available using either the keyboard or the mouse.

Hearing problems pose less of an issue in user interface design, but make sure that nothing in

your application requires the ability to hear. If you use sound as a signal, make sure thereôs an

alternative visual signal as well.

Standards and guidelines

There are a variety of standards for user interface behavior. Among the best known are those

published by Microsoft and Apple.

Best Practices for User Interfaces 10

Follow existing standards and guidelines unless you have a compelling reason not to. Itôs more

acceptable to ignore standards in order to do something revolutionary than to ignore them in

small ways.

The physical world is full of standards that make everyday life easier and safer. For example, the

gas pedal of a car is on the right with the brake on the left; deviation from this standard would be

dangerous. In North America, most light switches use up for ñonò and down for ñoffò; in other

parts of the world, the reverse is true. International travelers often find themselves fighting with

the light switches until they adapt.

Although user interface standards may not always be the most logical (why is Ctrl+V the menu

shortcut for Paste, anyway?), users already know them. Violating them will annoy your users.

For example, early versions of WinZip used Ctrl+A as a menu shortcut for Add. For Windows

users accustomed to Ctrl+Aôs standard meaning of Select All, this was a surprise to say the least.

The makers of WinZip obviously heard complaints because later versions use Ctrl+A for Select

All and Shift+A for Add.

Does this mean you canôt ever do anything differently than existing applications? Of course not.

If everyone did so, user interfaces would never change. If you have a new and better way to do

something, go for it. But donôt ignore standards just because you personally prefer different

behavior; your users wonôt thank you.

Best Practice: Follow existing standards unless you have a compelling reason not to.

Putting the principles to work

With the basic principles in mind, you can get down to the nitty-gritty of actually designing and

implementing a user interface. Some of the practical issues are direct reflections of the basic

principles, while others require you to think about how the principles apply.

To demonstrate these ideas, I've created an application for a library that incorporates borrowing

and returning books, managing members, looking things up in the catalog and maintaining the

catalog. The application, which is a work in progress, is included in the session materials.

Application-wide issues

Some design choices apply to the user interface and the application as a whole. Make these

decisions before you begin designing individual components.

Use task terminology

There are two aspects to using task terminology in an application. One is the whole point of view

of the application, the way it looks at the world. The second is the choice of terms used to refer

to the things the application deals with.

Best Practices for User Interfaces 11

The first concern with task terminology is about the approach you take to presenting an

application. From a developerôs point of view, itôs probably easiest to create one form for each

table in an application and then put all those forms on the menu. When you do that, though,

youôre exposing the applicationôs innards.

A good user interface instead presents the user with a set of tasks that reflect the process being

modeled, not the model used. For example, Quicken is organized around different types of

household accounting tasks; the main menu is shown in Figure 5.

Figure 5. Quicken's main menu lists the types of household accounting tasks its users
may want to perform, offering no indication of how the data for these tasks is actually
stored.

Note: Many user interface experts believe that the whole hierarchical directory structure

used in todayôs operating systems is an example of exposing the implementation rather

than considering the userôs goals.

The second aspect of task terminology is the choice of actual words you use. Every field has its

lingo, known as ñwords of art,ò including both terms unique to the field and common words used

in a special way. ñAssumptionò means something entirely different to a mortgage banker than to

a scientist. A musician, a mathematician and a psychologist each have different associations for

the word ñtriangle.ò

Not only do different professions have their own languages, but individual companies may have

their only way of referring to things or processes. Sometimes the choice of terms varies

geographically. For example, in California, the final step in buying a house is called the "escrow

closing," while in Pennsylvania, it's the "settlement."

Itôs important for an application to use the terminology users are familiar with and to use it in a

consistent way. I learned this lesson the hard way many years ago. I wrote an application that

essentially provided a front-end with search capability for a fixed set of data. The application

allowed users to specify terms that must appear in the search result. On the main form of the

application, I included a button that said ñSet criteriaò; clicking that button opened a form with a

title of ñSearch Criteria.ò When I demonstrated the application for the client, he asked ñWhatôs a

criteria?ò Iôd used a term I was comfortable with, but that was meaningless to the applicationôs

audience.

The best way to get the ñwords of artò right: donôt guess; ask the users. Make a list of the terms

they use for the objects and processes your application needs to deal with and use those terms

throughout.

Best Practice: Work with the users to define all the terms that will be used and then use

them consistently.

Best Practices for User Interfaces 12

Use language well

Words of art arenôt the only concern in an application. All use of language should be deliberate.

In general, you want to follow many of the rules that apply for writing.

Check spelling carefully. Misspellings in your interface confuse users and lower their

perceptions of your application.

Be grammatical. Although most aspects of a user interface don't use full sentences, do check for

subject-verb agreement and other standard uses of the language. Use the right part of speech.

Use parallel form for items in lists, choosing the same grammatical form and tense for each item

in the list. For example, if the caption for one option button in an option group is ñTerms: Net 30

days,ò donôt use ñTerms are Net 60 daysò for another button in the same group.

Avoid ambiguity. Not only did my ñSet criteriaò button use the wrong word, but it could be read

two different ways, based on whether ñsetò was being used as a noun or a verb.

Use color wisely

The use of color in applications is somewhat controversial. No sooner did we reach the point

where most users had color monitors than Windows came along with its recommendations for

minimal color. What are the issues with respect to color?

Color is an easy way to make things stand out. Making one item red in a form full of black on

white ensures that the user will notice that item. Color-coding is a very powerful mnemonic. The

decision by computer manufacturers to color code the cords and connectors for assembling

personal computers (Figure 6) has greatly increased the number of people who can put together

their own machines. The decision by networks in the United States to represent Republicans with

red and Democrats with blue on election maps has made the terms ñred stateò and ñblue stateò

immediately recognizable.

Best Practices for User Interfaces 13

Figure 6. Computer manufacturers color-code connectors and cables to make it easier
for people to assemble computers.

However, a significant portion of the population (about 10% of Western men) has some form of

color blindness. People who are color blind canôt see the differences between some colors. What

seems like good contrast to you may present little or no contrast to them. Subtle differences in

color may be totally meaningless to them. Beyond those with color blindness, thereôs a large

group whose vision is weak. Contrast can be an issue for these users as well.

Color is also an emotional issue. People respond to color viscerally. This is apparent from the

way we refer to color in the language (ñIôm feeling blueò; ñI see redò). An application painted in

a color a user dislikes may evoke an unconscious negative reaction. Along the same lines,

different colors have different meanings in various cultures. For example, in the West, white is

Best Practices for User Interfaces 14

the color of purity, used for wedding gowns, but in some Eastern cultures, white is the color of

death.

Color can also be overused. When everything is colored and thereôs no pattern, forms look silly.

Figure 7 is a form from a vertical market application (with a few things changed to disguise it).

Thereôs no apparent meaning to the different colors used and the form contains far too many

colors.

Figure 7. The apparently random use of color on this form from a vertical market
application leaves the user wondering what the meanings are.

So whatôs the solution? How can we use color to enhance an application without putting some

users at a disadvantage or creating a garish mélange?

The first step is to follow the best practice noted earlier: Respect the userôs Windows settings.

Users have chosen their Windows theme for a reason. Sometimes itôs just personal preference,

and sometimes itôs to ensure visibility. Whichever reason applies, developers shouldnôt override

those preferences.

The basic principle of consistency provides the next guide here. Use color consistently

throughout your application. The application from which Figure 7 is drawn not only applies

colors without meaning, but different forms in the application use different colors with no

apparent reason.

Make colors meaningful. Use color to emphasize similarities and differences, not just to dress up

your forms. Work with users as needed to discover the items that call for this type of emphasis.

Best Practices for User Interfaces 15

In addition, consider this use of color an enhancement, not an essential part of your application.

That is, whatever youôre doing with color, make sure thereôs another way for users to gather the

same information. While the plugs on the backs of computers are color-coded, they also have an

icon or text to indicate what should be attached.

Use color sparingly. Too much color leads to overload for the users. One item in red draws your

attention; 10 items in red are a distraction.

Finally, while emphasizing with color can be powerful, be aware that some users will assume

that only the emphasized items are important and will ignore the rest.

Best Practice: Use color sparingly and meaningfully, but donôt make it essential.

How can you follow all this advice in a VFP application?

¶ For the ColorSource property of forms, use either the default setting of 4-Windows

Control Panel (3D colors) or 5-Windows Control Panel (Windows colors). Use the latter

setting if youôre treating forms in your application as documents rather than dialogs. (See

ñDistinguish documents and dialogsò later in these notes.)

¶ Leave the ColorSource property of your base class controls at the default of 4-Windows

Control Panel (3D colors).

¶ If you put ñwallpaperò on your applicationôs main window, make sure itôs either subdued,
so it doesnôt distract the user, or that the user can turn it off or change it.

¶ For situations where something out of the ordinary is needed, such as drawing attention

to a particular control, draw the colors you use from the userôs theme. You can use the

GetSysColor API function to find the colors currently in use. The function is easy to use.

The code in Listing 1 shows the constant declarations and the function declaration. To

use the function, just call it, passing the appropriate constant. Keep in mind that API

functions are case-sensitive, so you must reference the function as GetSysColor with the

embedded capital letters. For example, the CheckOut form in the example Library

application has some controls that are there for reference only and always disabled.

Because disabled controls are hard to read in a number of themes and color schemes, the

form uses the AppWorkSpace color and the Window color for the disabled forecolor and

disabled backcolor, respectively, as in Figure 8.

Listing 1. You can find out what colors the user has chosen in Windows using the
GetSysColor API function.

#DEFINE COLOR_SCROLLBAR 0

#DEFINE COLOR_DESKTOP 1

#DEFINE COLOR_ACTIVECAPTION 2

#DEFINE COLOR_INACTIVECAPTION 3

#DEFINE COLOR_MENU 4

#DEFINE COLOR_WINDOW 5

#DEFINE COLOR_WINDOWFRAME 6

#DEFINE COLOR_MENUTEXT 7

#DEFINE COLOR_WINDOWTEXT 8

Best Practices for User Interfaces 16

#DEFINE COLOR_CAPTIONTEXT 9

#DEFINE COLOR_ACTIVEBORDER 10

#DEFINE COLOR_INACTIVEBORDER 11

#DEFINE COLOR_APPWORKSPACE 12

#DEFINE COLOR_HIGHLIGHT 13

#DEFINE COLOR_HIGHLIGHTTEXT 14

#DEFINE COLOR_3DFACE 15

#DEFINE COLOR_3DSHADOW 16

#DEFINE COLOR_GRAYTEXT 17

#DEFINE COLOR_BTNTEXT 18

#DEFINE COLOR_INACTIVECAPTIONTEXT 19

#DEFINE COLOR_3DHIGHLIGHT 20

#DEFINE COLOR_3DDKSHADOW 21

#DEFINE COLOR_3DLIGHT 22

#DEFINE COLOR_INFOTEXT 23

#DEFINE COLOR_INFOBK 24

DECLARE INTEGER GetSysColor IN WIN32API INTEGER nElement

Figure 8. This form draws colors from the current theme/scheme to make disabled
controls more readable.

Best Practices for User Interfaces 17

Use scalable fonts

Just as Windowsô users can set colors, they can also make font-related choices. The most

important from the application development perspective is the DPI setting that determines how

fonts are drawn. (In earlier versions of Windows, the user could simply choose between ñnormal

fontsò and ñlarge fontsò; in Windows XP, users can make a custom setting as well.)

As long as you use scalable fonts, large fonts wonôt give you any trouble. But if you choose a

non-scalable font (such as MS Sans Serif), captions and controls may be cut off for users with

large fonts. Figure 9 shows the main window of Lavasoftôs Ad-Aware with Windows set to use

large fonts; part of the information is cut off.

Figure 9. Apparently, Ad-Aware uses a non-scalable font, as part of its display is cut off
when Windows is set to use large fonts.

Following this advice in VFP is simple. Make sure the FontName setting for your base form and

control classes specifies a scalable font.

Make your application easy to use with both the keyboard and the mouse

Watch a number of people work with a computer and youôll be surprised at the variations in what

they do with the keyboard and what they do with mouse. Some type everything possible and

resort to the mouse only occasionally. Others use the keyboard only for text input and do all

selection and editing tasks with the mouse. Still others work in the middle ground between these

alternatives.

Similarly, if an option is available through the menu, a menu shortcut, a toolbar option and a

shortcut menu, different users will access it differently. In fact, the same user may access it

differently at different times, depending on what sheôs currently doing.

Best Practices for User Interfaces 18

Beyond the normal variations, some users find one type of device much easier to use.

Sometimes, the issue is a permanent motor disability. Sometimes, itôs a temporary disability such

as a broken arm. Sometimes, the cause isnôt the user, but the equipment. A temperamental

keyboard or a switch from a desktop machine to a laptop may change a userôs keyboard and

mouse habits.

All of these issues lead to the best practice stated earlier: Make all options available using either

the keyboard or the mouse.

This best practice isnôt hard to implement in most cases:

¶ Give every menu item a hot key. Give commonly used menu items shortcuts, as well.

¶ Make sure that TabStop is True (the default) for every input control. It is okay to set

TabStop to False for controls used only for display.

¶ If an item is on a toolbar, make sure that itôs included on a menu somewhere, as well.

¶ Take advantage of the built-in menu items, such as those on the Windows menu.

The one item you donôt need to worry about here is textual input using the mouse. If a user is

totally unable to use a keyboard, you can assume he has access to an on-screen keyboard tool

that can manipulated with a pointing device. (In fact, Windows includes one.)

The hardest issues on this front are situations where the user needs to point to some place on the

screen. But there are generally solutions, even if theyôre a little awkward. For example, prior to

VFP 8, the only way to select an item in the VFP Report Designer was with the mouse. In VFP 8

and later, you can tab through the controls in a report.

Remember so the user doesnôt have to

Computers are great at remembering things; with the increased storage capacity of current

machines, this is truer than ever. People arenôt as good at remembering. Even when theyôre doing

something theyôve done many times before, itôs not unusual to skip a step or make a mistake. So

one of your goals for the user interface should be to minimize what the user needs to remember.

Applications can remember all kinds of thingsðwhat the user did last, how a particular user

likes things set up, the most common entries for a particular field, and much, much more.

Making your application remember, though, takes advance planning.

Existing applications vary in their use of memory. In fact, even within an application, there can

be variations. For example, when you open a document in Microsoft Word, it shows the same

view you were last using. On the other hand, in other places, Word rapidly forgets. One that

drives me crazy is the Cross-Reference dialog (Figure 10). When you choose a different type of

reference to insert (using the Reference type dropdown), the content to be inserted always reverts

to ñEntire captionò. Since I often insert several different types of references (figures, tables, etc.)

into a document and never insert the entire caption, Wordôs insistence on this setting is

frustrating.

Best Practices for User Interfaces 19

Figure 10. When you change the Reference type in this dialog, the Insert reference to
dropdown always reverts to Entire caption.

VFPôs interface does quite a good job of remembering. Windows open where you left them and

when you open a code window, the cursor is where you left it. Even better, VFP gives you

control over this behavior through the SET RESOURCE setting. VFPôs Debugger has another

nice touch. You can rearrange the windows, add breakpoints, change settings and so on to your

heartôs content, but choose Window | Restore to Default from the Debugger menu and everything

is put back to its ñout of the boxò state.

What can your application remember?

¶ Window positions and sizes

¶ Settings/preferences

¶ The record(s) last edited in various forms

¶ The most common selections and entries for various fields

¶ Most recently used items

How can your application remember? The answer varies with what there is to remember. The

easiest thing to remember is the most common entries for various fields. VFP 9ôs auto-complete

functionality lets you build memory into textboxes simply by setting a few properties.

To remember other items, youôll have to build functionality. Doug Hennig published an article in

the January, 2000 issue of FoxTalk that showed how to store information such as window

positions and the last edited record. Itôs easy to build this functionality into your base classes.

Once you do so, you can store whatever information you want and restore it as needed. A

refactored version of this capability is included with the session materials.

Best Practices for User Interfaces 20

Provide Undo

One of the best practices discussed with the general principles is: Expect the users to make

mistakes. One way to do so is to provide undo functionality. A well-designed undo capability

can eliminate some of the generally ignored confirmation dialogs.

VFP provides a basic undo facility. As long as you include the Undo menu item (_med_undo)

somewhere in the menu, you can undo typing. It works in textboxes and editboxes, as well as in

various windows unlikely to be used in applications, such as memo windows, code windows, and

so forth. However, in forms, it works only within a single control; as soon as you leave the

control, you cannot undo typing there, even if you return focus to that control.

Itôs also not hard to write code to provide a basic undo for a form that restores all fields to the

values stored in the table. Just call TableRevert() for each table and then refresh the form.

VFPôs two-step deletion process also offers a type of undo capability, since it makes it possible

to restore deleted records.

A more comprehensive undo facility, that tracks application actions, and provides a general way

to return to an earlier state, would be an extremely powerful addition to any application.

Application Control and Menus

Most database applications use a menu bar as their primary control device. In most cases, thatôs a

good choice, since users of business applications are familiar with this approach. In some

situations, other approaches may make more sense. For example, a kiosk application for a public

place is better served by an opening form (a switchboard form) that uses buttons to direct users

to the main portions of the application. Even in a business application with a menu bar, such an

opening form can be very helpful to new users. In that case, it would duplicate the menu choices

rather than replacing them.

Beyond the menu bar or switchboard form, there are a number of tools available for application

control. Toolbars and shortcut menus provide users additional ways to access options.

Organize the menu bar sensibly

The first issue in designing the main menu for an application is deciding what menu pads to use,

that is, how you should organize the options of the application. Think about the userôs tasks and

goals. While the menu should probably include File, Edit and Help pads to match the userôs

expectations, donôt make the other pads Forms and Reports. Use words that reflect the

application domain. For example, in an application for managing a library, the pads might

include Circulation, Reference and Collection. Each menu pad then includes the actions related

to that aspect of a library, as in Figure 11.

Best Practices for User Interfaces 21

Figure 11. This main menu for a library application is organized around the main areas
of responsibility for the librarians.

Best Practice: Organize the menu around the userôs tasks.

Each menu pad, of course, leads to a menu popup, containing the items related to that pad.

Within the popup, you have several choices as to organization. One option is to list the items in

the order in which theyôre likely to be used; this makes the most sense for sequential processes.

Another choice is put items in frequency order, with most often used items at the top.

Whichever organization you choose, use divider bars in popups to separate items into meaningful

groups. The dividers make it easier to find the desired item, and harder to click on the wrong

item by accident.

Thereôs general agreement among usability researchers that cascading menus (where a menu

item contains a submenu, which may in turn contain a submenu) are harder to use than flat

menus. On the other hand, too many items in a single menu popup can be overwhelming. Itôs

probably best to use no more than one level below the menu popup; that is, the popup contains

items, which may contain submenus, but the submenus do not contain submenus. To avoid

overloading the individual popups, consider using dialogs called from the menu. For example,

choosing Format | Fonté in VFP opens the Font dialog rather than showing a submenu

containing Font Name, Font Size, and so forth.

It may be tempting to put some items in more than one place on the menu. When the same item

appears more than once, users try to understand the difference between the two. Resist the

temptation and view it instead as a sign that your menu organization needs revision. However,

putting an item on the menu and a toolbar, or on the main menu and a shortcut menu is not a

problem.

Provide hot keys and menu shortcuts

Windows menus offer two different mechanisms to simplify keyboard use: hot keys and

shortcuts. Offer both in your applications to speed more advanced users.

Menu hot keys are the underlined keys that appear when the menu has focus (and always appear

for menu pads in some versions of Windows). They allow users to navigate using the keyboard,

without having to use the arrow keys. For example, C is the hot key for Copy on the Edit menu.

Menu shortcuts are the key combinations that appear at the end of menu items and allow users to

choose the item without opening the menu. For example, Ctrl+C is the menu shortcut for Copy.

In VFP, both hot keys and shortcuts can be specified using the Menu Designer. To set a hot key,

precede the chosen letter of the prompt with ñ\<ò (omitting the quotes), as in Figure 12. To

specify a shortcut, use the Prompt Options dialog (Figure 13) thatôs accessed through the

Best Practices for User Interfaces 22

Options button for each item in the Menu Designer. Click into the Key Label textbox and then

press the key combination you want to use. Itôs traditional to use Alt-key combinations for menu

pads and Ctrl-key combinations for menu bars. In the Key Text textbox, you can specify how the

shortcut should be displayed on the menu. The shortcut appears at the right-hand side of the

menu popup.

Figure 12. Use "\<" in the caption of an item to specify a hot key.

Best Practices for User Interfaces 23

Figure 13. Use the Prompt Options dialog to specify a shortcut for a menu item. The
Key Label textbox contains the name of the key; the Key Text textbox indicates how it
will be displayed on the menu item.

Best Practice: Give every menu item a hot key.

Every item within a menu popup should have a unique hotkey. How do you choose the hot key

for each menu item? This prioritized list is adapted from Johnsonôs GUI Bloopers:

¶ If thereôs a Windows standard hot key for an item, use it.

¶ Use the first letter of the prompt.

¶ Use the first letter of another word in the prompt (sticking to the meaningful words).

¶ Use a consonant from the prompt, preferably one that is pronounced rather than silent.

¶ Use the first letter in the prompt thatôs available.

Best Practice: Give frequently used menu items shortcuts.

You donôt need a shortcut for every menu item, just for those users frequently access. In fact, itôs

better not to provide shortcuts for particularly destructive menu items. Here are some guidelines:

¶ Give each menu pad a shortcut, using Alt + a letter. If the pad is widely used in Windows

menus, use the usual hotkey.

Best Practices for User Interfaces 24

¶ Provide shortcuts for ñstandardò menu items such as File | New, Edit | Copy and so forth.

Use the standard shortcuts for those items.

¶ Provide shortcuts for menu items users will need frequently. Use Ctrl-key combinations,

making each combination unique across the application.

Clue users in about menu itemsô behavior

Some menu items simply perform an action; for example, Edit | Paste pastes whatever is on the

clipboard at the cursor position. Other items open a dialog to collect more information before

acting; for example, VFPôs Program | Doé opens a dialog to choose the program to execute.

When a menu item opens a dialog, put an ellipsis (three dots) at the end of the itemôs text; this

convention tells users that a form will open.

Including the ellipsis makes it safer for users to explore the application. When a menu item ends

with an ellipsis, the user knows he can choose the item to see what appears without actually

triggering an action.

Manage usersô access to menu items

Application actions can be divided into three groups for any user: those he can always use, those

he can sometimes use, and those he can never use. Manage the menu to make the distinctions

clear to users.

Disable items when theyôre not available at the moment. In VFP, the SKIP FOR clause of the

menu commands lets you handle such items. Use application properties or methods to track a

particular userôs status. The built-in menu items, like Cut, Copy and Paste, handle enabling and

disabling automatically, so you donôt have to worry about them.

Donôt show a user menu items he can never choose; make them disappear. If only administrative

users can access the Human Resources module, donôt display it for other users. Itôs both

frustrating and tempting to them. While VFPôs Menu Designer canôt manage visibility of menu

items, the public domain tool, GenMenuX, makes it easy to do so. (GenMenuX is included in the

materials for this session.)

Best Practice: Donôt show a user menu items he can never use.

The exception to this rule is in trial versions of an application. There, you may choose to disable

some options; in such cases, a message should indicate that this option is available in the full

version of the product.

Use toolbars as mouse shortcuts

Toolbars are to mouse users what menu shortcuts are to keyboard usersða quick way to access

the most frequently used items in an application. Keeping this rule in mind makes it easy to

Best Practices for User Interfaces 25

decide whether or not to use toolbars in an application and which items to put on toolbars. For

the most part, itôs the same items for which you provide menu shortcuts.

Everything on a toolbar should be available on the menu as well. Otherwise, itôs only accessible

to mouse users, not to those working from the keyboard.

Use separators to divide the items on a toolbar into logical groups. Separators serve the same

purpose in a toolbar that lines do in a menuðthey help users see the items and make it easier to

land on the right one.

Use graphical buttons and checkboxes on toolbars and do not include a textual caption. Instead,

give every item on the toolbar (except separators) a tooltip. Tooltips should be brief, one or two

words. If you need a whole sentence or paragraph to explain what a toolbar button does, perhaps

itôs not really a good candidate for the toolbar.

Use the same icons on the toolbar as in the menu. That helps users learn what an icon represents.

Toolbars are not intended to contain input controls, like textboxes. While you can make them

work, including them violates the basic idea that a toolbar is a set of menu shortcuts.

Best Practice: View toolbars as menu shortcuts for mouse users.

Large and small toolbars offer users more control

Toolbars can be very handy, but the traditional size of toolbar buttons can make it hard to

interpret the icons and to hit the right button. Making toolbars larger uses valuable screen real

estate. One good compromise is to offer both and let users decide.

Some applications that offer both large and small toolbars use the same icons on both. Others use

more detailed icons on the large toolbar. Figure 14 shows the small and large toolbar in WinZip;

Figure 14. WinZip lets you choose whether to use small or large toolbars. The icons on
the large toolbar have much more detail, yet are far more visible.

Itôs not terribly hard to provide large and small toolbars in VFP. The materials for this session

include a toolbar class and classes for command buttons, checkboxes, and option buttons that can

switch between large and small. The most difficult aspect is likely to be finding icons in both

sizes, but some tools are available that let you resize graphics proportionally. (Iôve used SnagIt

Editor for this task.)

Best Practices for User Interfaces 26

Shortcut menus provide another alternative

Shortcut menus offer another way to make menu options available. These menus, also known as

context menus or right-click menus, appear when the user right-clicks, presses the shortcut key

on the keyboard or presses Shift+F10. Typically, shortcut menus contain just a few items chosen

for their relevance to whatever the user is working on. Figure 15 shows the shortcut menu

available in VFPôs code editing windows. It has more options than are typical.

Figure 15. This shortcut menu, available in code editing windows in VFP, is longer than
most.

Well-designed shortcut menus can help users learn what an application can do. Some users right-

click everywhere when learning an application to see whatôs available.

Be consistent in your use of shortcut menus. Itôs okay to omit them entirely, but if you choose to

provide them, then do so uniformly. If one data entry form offers a shortcut menu, all forms

should.

At the same time, shortcut menus should only contain items relevant to the current situation.

Donôt create a single shortcut menu to make available throughout your application; instead create

separate shortcut menus for different situations.

Best Practices for User Interfaces 27

Organize shortcut menus with most frequently used items at the top to make navigation as easy

as possible. The exception to this rule is for dangerous items; make it hard to select these by

accident or omit them from shortcut menus. In VFP, shortcut menus open with the first item

selected. Be sure that accidentally choosing that item wonôt cause damage.

As in other menus, use lines to separate groups of items and to set off dangerous items.

Every item in a shortcut menu should appear on the main menu, as well. Use the same icon for

the item everywhere it appears.

You can create shortcut menus with VFPôs Menu Designer. Choose Shortcut from the New

Menu dialog (Figure 16) that appears when you create a Menu.

Figure 16. Choose Shortcut in this dialog to create a shortcut menu. VFPôs menu
generator program, GenMenu, generates a single popup that appears at the mouse
position.

Shortcut menus are generally open by right-clicking on the relevant object. However, most

keyboards also offer a key to open the shortcut menu; in addition, in most applications,

Shift+F10 also opens the shortcut menu. It's easy to hook your shortcut menus into the

RightClick method of the relevant controls. However, you need additional code to allow users to

access shortcut menus from the keyboard. Checking for Shift+F10 in the KeyPress method

catches both that key combination and the shortcut menu key.

Forms

For most applications, forms are where users spend the most timeðadding and modifying data,

then examining and organizing it. So itôs important for forms to reflect the userôs way of thinking

about the task at hand.

The main tasks for database applications generally involve entering new data, looking up and

modifying existing data, and crunching data to get long-term results, trends, and so forth. The

amount of time users spend on each of these tasks varies with the application; in some (like

point-of-sale applications), the most common activity is entering new data, while in others (like a

library system), itôs looking up or modifying existing data. In addition, different users of the

same application may spend much more time with one aspect than another. For example, a

Best Practices for User Interfaces 28

cashier using a POS system enters lots of new data, and does little else, but the store manager

spends most of her time in the number-crunching portions of the application.

In designing the forms for an application, you need to consider how often and under what

circumstances someone uses the form. A data entry form that needs to be filled in dozens of

times a day should be streamlined to allow heads-down data entry (where the user doesnôt even

look at the screen). On the other hand, a form for performing month-end or year-end tasks should

guide the user through the necessary steps.

Forms have title bars

With few exceptions, every form should have a title bar that identifies its purpose. The caption

on the title bar should reflect the menu item or button used to open the form. (See the

ñFeedbackò section earlier in this document.) You may want to enhance the title bar by including

information about the specific item itôs addressing. For example, when you choose Properties for

a file in Windows Explorer, the Properties window includes the file name, as in Figure 17. To

follow the Feedback principle, though, itôs probably better to put the identifying information

after the form name, so ñProperties for vfp9.exeò is a better choice in Figure 17.

Best Practices for User Interfaces 29

Figure 17. Choosing Properties for a file in Windows Explorer opens a window that
includes the file name.

Best Practice: Give every form except the splash screen a title bar.

The principal exception to the title bar rule is a splash screen, displayed to provide rapid

feedback on application start-up and to give the user something to look at while the application

performs necessary start-up tasks. Splash screens typically omit title bars and include the name

and version of the application, and other identifying information.

Distinguish dialogs and documents

Forms fall into two main categories, dialogs and documents. Dialogs let an application

communicate with a user. Sometimes the communication is one way, as with the most basic form

of the Windows message box, but often itôs two-way, with the dialog collecting information

needed to perform a particular task. For example, the Font dialog (VFPôs version is shown in

Figure 18) lets you specify font characteristics. When you choose OK, theyôre applied to a

particular object. (This is another example where including identifying information would be

useful; a title of ñFont for xxxò would add clarity.) Dialogs are generally displayed briefly and

then dismissed; theyôre almost always modal. Dialogs are an interruption.

Best Practices for User Interfaces 30

Figure 18. The Font dialog lets you specify font settings for a particular item, though the
VFP version of the dialog doesnôt tell you what item.

Documents, also known as primary windows, are where the main action of an application takes

place. In some applications, like Word and Excel, the term ñdocumentò is very comfortable. For

database applications, describing data entry forms as documents may seem like a stretch, but in

fact, when you view them as the creation and modification of records, the analogy makes sense.

After all, Word is all about the creation and modification of letters, reports, labels and so forth.

Excel is for creating and editing workbooks. Documents tend to be displayed for long periods of

time and are never modal. Documents arenôt an interruption; theyôre the main act.

Using the right window type helps users understand their options. Use documents for your

applicationôs main tasks and use dialogs for helper forms as needed. In VFP, though few

developers do so, you can easily follow the Windows coloring guidelines for documents and

dialogs using the ColorSource property. Leave dialog forms set to 4-Windows Control Panel (3D

Colors) and set documents to 5-Windows Control Panel (Window Colors). For example, the

CheckOut form for the Library application in Figure 8 is a document, so it uses Window colors.

Data entry forms are not modal

Back in the old days, when a user opened a form, she was expected to do what she needed with

that form, close it and only then open another. FoxPro offered the possibility of opening multiple

forms at once and letting a user work with multiple forms long before it was the most dominant

paradigm. Nonetheless, some developers still use only modal forms in their applications. Donôt.

Best Practice: Make data entry forms modeless.

Best Practices for User Interfaces 31

Very few users work in an environment where the task theyôre performing canôt be interrupted

by another, more pressing, task. A billing clerk may get a phone call from the boss, wanting the

details of last weekôs order from a big customer right now. Entry of accounts receivable may be

interrupted by a customer asking for shipping information on a recent order. Even environments

where we tend to think of the work as purely sequential donôt necessarily have to be so; I've read

about a point-of-sale application for supermarkets that allows the cashier to put one order on

hold when thereôs a problem and continue with the next customer in line.

Even if a user isnôt interrupted by another task, itôs not unusual to have to look up information in

order to perform the current task. While we can design applications to make the most common

look-ups available from data entry forms, we certainly canôt cover all the possibilities.

The bottom line here: A user should almost never have to cancel the work heôs doing in order to

go to another part of the application.

Keep dialogs to a minimum during processing

There are two kinds of dialogs in an application, the ones the user requests and the ones the

application generates. The user requests things like an Options dialog that lets him establish the

way the application operates or a Print dialog to choose a printer and specify print settings. For

these windows, a dialog is usually a good choice.

Dialogs the application generates are an interruption; use them sparingly. Design your

application so that users can work fluidly. Interrupt them only for important things.

What constitute important things? Here are some examples:

¶ Hardware problems the application canôt work around or ignore;

¶ Confirmation of seriously destructive actions (like erasing all the data);

¶ Keeping the user informed of progress for long tasks;

¶ Letting the user select a file or folder.

Whatôs just an interruption?

¶ Confirmation of normal action, like deleting a single record;

¶ Telling the user what was just done unless itôs unusual (and even if it is, telling the user is

only useful if she can do something about it);

¶ Telling the user about an error the program can simply fix.

In other words, alerts and confirmations should be used minimally, if at all. First, theyôre

annoying because theyôre interruptions.

Second, they donôt really accomplish anything. Most of what alerts do can be accomplished with

other techniques. For example, VFP doesnôt show you a ñFile Savedò dialog every time you save

a program. Instead, the title bar of a code editing window contains an asterisk when there are

Best Practices for User Interfaces 32

unsaved changes, as in Figure 19. When you save, the asterisk disappears. This mechanism

provides immediate feedback and eliminates the need for an alert.

Figure 19. Visual FoxPro indicates that code in an editing window has changed by
adding an asterisk to the title bar. When you save, the asterisk disappears. This
feedback avoids the need for an alert on saving the code.

Other applications use other techniques to avoid alerts. In Microsoft Word, when you save a file,

a disk icon briefly appears in the status bar. Most web applications use an asterisk or other

character to indicate required fields and then highlight missing items when the user attempts to

save, rather than displaying a separate alert.

The Library application puts messages directly on forms rather than using alerts to tell the user

about problems or provide additional information. Figure 20 shows the library applicationôs

form for checking in books; when it receives an invalid barcode, it shows a message right on the

form, rather than using a messagebox.

