

Getting Started with PHP

Tamar E. Granor
Tomorrow's Solutions, LLC

Voice: 215-635-1958
Website: www.tomorrowssolutionsllc.com
Email: tamar@tomorrowssolutionsllc.com

PHP is one of the most commonly used languages for adding code to websites. It allows you to
pre-process information and generate HTML, and it has extensions for working with a variety
of databases, including SQL Server and MySQL.

In this session, we'll look at the basics of PHP as well as how to use it to add data to websites
at runtime.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 2 of 55

Introduction
I first used PHP when I needed to update the website I’d created for a non-profit I’m
involved with to include something like a “Contact Us” page. I needed a way to collect name
and address, along with other information. By then, I’d heard a couple of user group
sessions on PHP. As I think is common for those creating websites, I found some examples
that were similar to what I wanted to do and modified them for my needs.

A few years later, I needed to build some new data-driven websites and used that as an
opportunity to actually learn some PHP (as well as JavaScript, Bootstrap, and more). The
first site was a struggle, but the second was much easier.

The goal of this session is to help you get through that initial struggle by sharing what I’ve
learned. I’ll assume you’ve spent at least a little time with HTML and have some idea how to
create a static webpage.

What is PHP?
PHP is a programming language designed for web development. The name (in a self-
referential fashion typical of a certain corner of the computing world) stands for PHP:
Hypertext Processor. It was created in 1994.

Most web hosts make PHP available, though it may have to be enabled.

Getting Started
Because PHP code normally runs on a website, you don’t actually have to install it locally,
but having it installed and properly configured makes it easier to test. In addition, to start
with PHP (and web work more generally), you need to have some kind of IDE.

Installing and configuring PHP

The home page for PHP is https://www.php.net/. Click Downloads there to get to the
download site. There, you’ll find the current version at the top and recent older versions
below. However, the downloads on that page are Linux-oriented. Click Windows
downloads for the version you want, or simply go to https://windows.php.net/download/.

The download page offers four different downloads for each PHP version. The first choice is
easy: 64-bit (x64) or 32-bit (x86); choose the appropriate one for your computer. The
second choice is more complicated: thread safe or non-thread safe. There’s information on
the download page about what to choose, but if you’re not heavily into web development,
it’s hard to understand. The simple answer seems to be that it depends what web server
you’re running (on your local machine). If you’re using IIS (Microsoft’s web server), take
the non-thread safe version. If you’re using Apache, take the thread safe version.

Once you’ve downloaded it, installing PHP is simply a matter of unzipping it into a folder.

https://www.php.net/
https://windows.php.net/download/

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 3 of 55

However, being able to run PHP code on your local machine is complicated. As the
download discussion implies, you need to have a web server installed and running. Beyond
that, there is configuration required to make that web server talk to PHP.

There are multiple articles about how to set up IIS and PHP to talk to each other. This one is
the most straightforward I could find:
https://jamesmccaffrey.wordpress.com/2017/01/26/installing-php-on-windows-10-and-
iis/.

If you prefer to use Apache, your best bet is to download a complete package that includes
Apache, PHP and some other tools from https://ampps.com/download.

Choosing an IDE

In the VFP world, we’re spoiled by having a dedicated IDE. When you install VFP, you get an
IDE with it, including a debugger. Most other programming languages don’t have that tight
integration of the IDE with the language, so to start working with them, you need to install
both the language and an appropriate IDE. The primary benefit of this separation for web
development is that you can often use a single IDE for HTML, CSS, PHP, JavaScript, and
whatever other web technologies you’re working with.

You can create websites with a simple text editor, even Notepad. But you’re likely to be
more productive with a tool that provides features like syntax coloring and completion,
debugging, and so forth.

There are many, many IDEs for web development available. In the last few years, I’ve tried
three of the free options. I haven’t been entirely happy with any of them. I’m currently
using Microsoft’s Visual Studio Code.

The first major IDE I tried was Eclipse (https://www.eclipse.org/ide/). It offers multiple
versions, including one for PHP. It has a wide variety of supports for writing web code,
including syntax coloring, code completion, matching brackets, code folding, and much
more. However, I found that fairly regularly, it would lose many of the keyboard shortcuts
for navigation. (That is, I’d press something like CTRL-Home and nothing would happen.)
I’d have to shut Eclipse down and restart it and most often, that fixed the problem. But it
was slow to start up and obviously, having to do that disrupted my train of thought. I
searched online for a solution, but nothing I found seemed to fix it for good.

Next, I tried NetBeans IDE (https://netbeans.org/). Like Eclipse, it offered syntax coloring,
code completion, matching brackets, code folding, and more. However, I found that
virtually every time I used it, early in my session, the IDE would freeze for anywhere from 1
to 3 minutes. When the freeze ended, I’d get a message that “slowness” had been “detected”
and would be asked to report what was happening. I did that diligently for some time, but
finally got tired of it.

I currently use Microsoft’s Visual Studio Code (https://code.visualstudio.com/). To work
with a particular language or languages, you can load extensions that support that

https://jamesmccaffrey.wordpress.com/2017/01/26/installing-php-on-windows-10-and-iis/
https://jamesmccaffrey.wordpress.com/2017/01/26/installing-php-on-windows-10-and-iis/
https://ampps.com/download
https://www.eclipse.org/ide/
https://netbeans.org/
https://code.visualstudio.com/

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 4 of 55

language. I’ve installed some extensions, but haven’t yet hit on exactly the right set to give
me all the features Eclipse and NetBeans offer. However, since I also haven’t had the kinds
of problems I did in those IDEs, I’m far more productive.

Using PHP on a webpage
PHP was created as a server-side scripting language for websites. This has a couple of
consequences. First, of course, PHP code is executed on the web server, not on the machine
running the browser. That means PHP code can’t make assumptions about what’s available
based on what’s available to the local machine.

The second consequence is that there has to be a way to indicate PHP code within a web
page. Blocks of PHP code are bracketed with <?php and ?>. That is, a typical PHP block
looks like Listing 1. (As the example shows, you indicate comment lines in PHP with //.)

Listing 1. Blocks of PHP code are indicated by bracketing the code.

<?php

//Your PHP code here

?>

There are times when you want to simply evaluate an expression in PHP within HTML. To
do that, you put the expression inside <?= and ?>, as in Listing 2.

Listing 2. You can embed a PHP expression in HTML to be evaluated as the page is drawn.

<td>This line of HTML includes an evaluated PHP expression: <?= strval($obj->iID) ?>

It’s not unusual to have a mix of both styles in a single page.

PHP basics
In learning any new programming language, there’s a set of basic things you need to do.
How do you divide code statements? How do you specify comments? What, if anything, is
case-sensitive? And so on. This section of this paper tackles those fundamentals.

Terminating PHP statements

PHP uses semi-colons as statement terminators. That is, you put a semi-colon at the end of
each statement, as in Listing 3.

Listing 3. PHP requires a semi-colon to terminate each statement.

<?php
 echo "hello";
 echo "world";
?>

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 5 of 55

Because every statement is terminated, you can put more than one statement on a line. So
the code in Listing 4 is equivalent to the code in Listing 3.

Listing 4. You can put more than one statement on a line because every statement is terminated.

<?php
 echo "hello"; echo "world";
?>

The closing bracket (“?>”) can serve as a terminator for the last line of code, so the code in
Listing 5 is also equivalent to the other two examples. (In fact, you can omit the closing
bracket if the final statement is terminated with a semi-colon.)

Listing 5. The closing bracket for PHP does double-duty as the final statement terminator.

<?php
 echo "hello";
 echo "world"
?>

Indicating comments

As noted in “Using PHP on a webpage” above, a pair of slashes indicates a comment in PHP.
That notation can be used both at the beginning of a line and to add a comment at the end
of a line. PHP allows # for the same purpose.

PHP also supports block comments that begin with /* and end with */. These comments
can be spread across as many lines as appropriate. The closing */ can appear anywhere, but
many people prefer to put it at the beginning of a new line to make the end of the comment
obvious.

Listing 6 (HelloWorld.php in the materials for this session) demonstrates the various ways
to indicate comments.

Listing 6. There are multiple ways to indicate comments in PHP.

<?php
 // This is a comment
 # So is this
 echo "hello"; //This is an inline comment
 echo "world"; # So is this
 /* This is a block comment. It can be divided across
 as many lines as you want. People often use
 these for headers. People often put the closing
 part on a separate line, but it's not required.
 */
?>

Most of the IDEs provide an easy way to toggle comments, so you can quickly comment
code out or restore it.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 6 of 55

Case-sensitivity

PHP is partly case-sensitive. The language keywords can appear in any case, but variable
names are case-sensitive. That means that you can use the ECHO command by typing ECHO
or echo or Echo or any other mix. However, the variable names $NAME, $Name, and $name
refer to three different variables.

Variables

All variable names in PHP begin with $. The character following the $ can be a letter or the
underscore character. After that, you can use letters, numbers and underscores. (In other
words, except for the $ at the front, PHP variable names follow the same rules as Visual
FoxPro.)

Variables in PHP are loosely typed. That is, you don’t declare the type for a variable and the
type of a variable can be changed dynamically, as in Listing 7.

Listing 7. PHP variables are loosely typed, so you can change the type of a variable simply by assigning a
value of a different type.

<?php
 $MyVar = 'Tamar';
 $MyVar = 7;
?>

PHP variables have local scope, by default. However, any code that’s not in a defined
function is part of the same scope, even if it’s interspersed with HTML in a file and even if
it’s spread across multiple files. Variables defined at that level are referred to as global,
even though they are not available inside functions.

However, you can make such global variables available inside a particular function by
adding a global definition for it, inside the function. Listing 8 demonstrates. (See the
section “Creating custom functions,” later in this paper, for details on defining functions.)

Listing 8. Variables declared at the global scope are not available inside functions, unless you add a global
declaration inside the function.

<?php
 $MyVar = 'Tamar';

 function test1() {
 global $MyVar;
 echo $MyVar; //Works
 }

 function test2() {
 echo $MyVar; //Gives an error
 }

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 7 of 55

PHP also offers static variables. These allow you to create a variable inside a function and
have it remain in memory for future calls to the same function. Static variables let you do
things like count how many times a function is called.

Generating output

As you may have inferred by now, the ECHO command generates output. In a web page, it
lets you produce text to be inserted into the page. So, for example, if you saved the code in
Listing 3 to a file, uploaded the file to your webhost, and navigated to it, you’d get a page
with just the string “helloworld”, as shown in Figure 1.

Figure 1. The ECHO command generates output for your web page.

ECHO can actually handle multiple, comma-separated strings, even of different types. (See
the section, “Data types,” later in this document, for a discussion of PHP data types.) The
values passed are concatenated with no space added. (PHP, of course, also has a
concatenation operator for strings; it’s discussed later in this paper in “Strings.”) So the
code in Listing 9 (NameAndBirthdate.php in the materials for this session) produces a
single line shown in Figure 2; note the inclusion of spaces within the quoted strings in
order to get appropriate spacing in the result.

Listing 9. The ECHO command accepts multiple, comma-separated expressions.

<?php
 $Name = 'Tamar';
 $BirthYear = 1958;
 echo "My name is ",$Name,". I was born in ", $BirthYear, "."
?>

Figure 2. You can build complex strings by combining expressions with ECHO.

ECHO doesn’t assume that what you send is meant to be a complete line. Unless you
specifically tell it to start a new line, ECHO keeps adding to the current line. So the code in
Listing 10 produces the same result as the code in Listing 9.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 8 of 55

Listing 10. ECHO doesn’t add line breaks unless you tell it to, so this code is equivalent to the previous
example.

<?php
 $Name = 'Tamar';
 $BirthYear = 1958;
 echo "My name is ";
 echo $Name;
 echo ". I was born in ";
 echo $BirthYear;
 echo ".";
?>

Indicating a new line is both simple and tricky. You can include “\n” in the string to start a
new line. However, a browser will ignore that character and keep the string on a single line.
So, for example, the code in Listing 11 creates a two-line string, which I can see in VS
Code’s output window, as in Figure 3. However, in the browser, the output looks the same
as Figure 2.

Listing 11. Including “\n” or “\r\n” in the string to output produces a new line, but it doesn’t affect the
browser.

<?php
 $Name = 'Tamar';
 $BirthYear = 1958;
 echo "My name is ",$Name,".\nI was born in ", $BirthYear, "."
?>

Figure 3. Because the output included “\n”, in the VS Code output window, two lines are visible.

There are a couple of ways to get a new line in the browser. One is to include the
appropriate HTML tag in the string rather than “\n”. The code in Listing 12 uses the

tag to break the text into two lines, giving a result like that in Figure 3. (However, in this
case, the VS Code Output window gets it wrong.)

Listing 12. You can include HTML tags in the expressions you pass to ECHO.

<?php
 $Name = 'Tamar';
 $BirthYear = 1958;
 echo "My name is ",$Name,".
I was born in ", $BirthYear, "."
?>

The second option is to use PHP’s nl2br() function to convert the new line character or
characters into the
 tag, as in Listing 13 (EchoWithBreak.php in the downloads for
this session).

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 9 of 55

Listing 13. PHP’s nl2br() function converts \n, \r or the combination \r\n to the HTML
 tag.

<?php
 $Name = 'Tamar';
 $BirthYear = 1958;
 echo "My name is ",$Name,nl2br(".\nI was born in "), $BirthYear, "."
?>

One final note related to generating output with ECHO. Single quotes and double quotes are
not interchangeable in PHP. That difference, described in “Strings,” later in this paper,
affects the results of ECHO.

PHP supports some other ways of generating output, generally used for testing and
debugging. VAR_DUMP() accepts a list of expressions and produces output showing the
type and value for each. For example, if we replace the ECHO command in Listing 13 with
the line shown in Listing 14 (VarDump.php in the materials for this session); the result is
shown in Figure 4.

Listing 14. The VAR_DUMP() function outputs information about each expression you pass it.

 var_dump($Name, $BirthYear);

Figure 4. VAR_DUMP() shows you the type and value of each expression and some additional information.

The PRINT_R() function prints (or returns) the value of a variable in a human-readable
form. For scalar variables, that doesn’t provide anything new, but for arrays (see “Arrays,”
later in this paper), it shows the entire array.

Data types
PHP supports four scalar data types: string, integer, float (also known as double), and
Boolean. In addition, PHP supports two compound data types: arrays and objects. There are
two special data types: resource and NULL.

The PHP documentation refers to callbacks, function calls passed as parameters, and
iterables, a generic way to refer to things that can be iterated, as compound data types, but
since both are used for specifying parameters and return values, I think they’re more
notations than data type.

This paper covers the basics about PHP’s data types and omits some of their complexities.

Strings

Strings in PHP can be delimited by either single quotes or double quotes, but the two are
not interchangeable. Single quotes are the simplest delimiter. When you use them the

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 10 of 55

string is exactly what’s enclosed in the quotes, except that you can insert the single quote
character itself using backslash (\)as an escape character. The code in Listing 15
(SingleQuotes.php in the materials for this session) produces the output shown in Figure 5.

Listing 15. Single quotes specify strings that contain exactly what’s inside them, except you need to escape
single quotes.

<?php
 $Name = 'Tamar';
 $Company = 'Tomorrow\'s Solutions, LLC';
 echo $Name,nl2br("\n");
 echo $Company;
?>

Figure 5. The simplest way to specify a string is by surrounding it with single quotes.

Double-quotes handle a whole set of escaped characters (Table 1 shows the most
commonly used; see the PHP documentation for the complete set) and evaluate any
variables within the string. This is why, in earlier examples, \n was wrapped in double-
quotes.

Table 1. When you enclose a string in double-quotes, you can include a number of special characters,
including these, and have them handled properly.

Escape sequence Meaning ASCII code
\n Line feed 10
\r Carriage return 13
\t Tab 9
\f Form feed 12
\\ Backslash 92
\$ Dollar sign 36
\" Double quote 34

Listing 16 (DoubleQuotes.php in the materials for this session) demonstrates the
convenience of evaluating variables on the fly this way. The result is shown in Figure 6.
This capability makes it easy to put together blocks that include a number of values. You
don’t have to keep closing quotes, concatenating, and then opening quotes.

Listing 16. When strings are delimited by double-quotes, variables in the string are evaluated.

<?php
 $Name = 'Tamar';
 echo "Hello, my name is $Name";
?>

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 11 of 55

Figure 6. This output was created by evaluating a variable in a double-quoted string.

To concatenate two strings, use the dot operator (that is, the period), as in Listing 17
(Concatenate.php in the materials for this session). The result is shown in Figure 7.

Listing 17. The concatenation operator in PHP is a period.

<?php
 $FName = 'Tamar';
 $LName = 'Granor';
 $Name = $FName.' '.$LName;
 echo $Name;
?>

Figure 7. You combine strings in PHP with a dot.

Like a number of languages, PHP makes it easy to build up long strings by offering a
concatenating assignment operator, combining the dot with an equal sign. When you use
this operator, the string on the right-hand side of the operator is concatenated to the string
on the left. It’s one of a whole set of assignment operators; some of the others are discussed
in the next section.

The example in Listing 17 can be rewritten using this operator, as in Listing 18
(ConcatenateAssign.php in the materials for this session). While the change probably
makes this particular example less readable, when building up long strings, the
concatenation assignment operator can make code a lot easier to read.

Listing 18. You can concatenate across multiple assignment statements using .=, the concatenating
assignment operator.

<?php
 $FName = 'Tamar';
 $LName = 'Granor';
 $Name = $FName;
 $Name .= ' ';
 $Name .= $LName;
 echo $Name;
?>

Numeric types

PHP supports two numeric data types: integer and float/double. Most of the time, you can
use them interchangeably. That is, in most cases, you don’t need to think about whether a
given value is integer or float. Since PHP is loosely typed, you can assign an integer value to
a variable, and follow that up by assigning it a float value. In many cases, conversion

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 12 of 55

between the two types happens automatically. For example, multiplying an integer by a
float results in a float, even if you assign the result to the variable holding the integer.

As in other languages, float values have limited precision and doing arithmetic with float
values can lead to rounding errors.

Listing 19 (Numbers.php in the materials for this session) demonstrates both an integer
and a float value and the result of multiplying them. Figure 8 shows the output.

Listing 19. You can use both integer and float values in PHP, and mix them together without explicitly
converting.

<?php
 $qty = 17;
 $cost = 5.73;
 echo $qty, ' items at $', $cost, '= $', $qty * $cost;
?>

Figure 8. PHP supports integers and floats.

PHP has the arithmetic operators you’d expect: + for addition, - for subtraction, * for
multiplication, and / for division. In addition, it offers % for modulo and ** for
exponentiation. Listing 20 shows each of those at work; it’s included in the materials for
this session as Arithmetic.php.

Listing 20. PHP has a full set of arithmetic operators.

<?php
 echo 5+3,'
'; // 8
 echo 100-37,'
'; // 63
 echo 17*15,'
'; // 255
 echo 27/3,'
'; // 9
 echo 60 % 8,'
'; // 4
 echo 4 ** 3,'
'; // 64
?>

The + and - operators also convert numeric strings to numbers. The newly created number
is either integer or float, based on whether the string has decimals or not. Use + to simply
convert the string to a number; use - to invert its sign at the same time.

As mentioned in the previous section, there’s a whole set of arithmetic assignment
operators. Each of them consists of the arithmetic operator followed by the equal sign.
They’re shown in Table 2. In each case, the variable on the left-hand side is treated as the
first operand, as well as being assigned the result, while the variable or value on the right is
used as the second operand. Since these operators make the most sense when looping
through values, I’ll wait to show an example until we see some loop commands.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 13 of 55

Table 2. PHP supports a whole set of arithmetic assignment operators that make it easier to accumulate
results.

Operator Operation
+= Addition
-= Subtraction
*= Multiplication
/= Division
%= Modulo

PHP also has special operators for incrementing and decrementing a variable. Use ++ to
increment by one and -- to decrement by one. Listing 21 (Incrementing.php in the
materials for this session) demonstrates; the result is shown in Figure 9.

Listing 21. PHP has special operators for incrementing and decrementing numeric variables.

<?php
 $Age = 5;
 echo $Age;
 $Age++;
 echo ' ',$Age++;
?>

Figure 9. Use the ++ and -- operators to quickly add 1 or subtract 1.

Booleans

As in other languages, Booleans are logical values. They can be either TRUE or FALSE. (The
constants are not case-sensitive, so you can write TRUE, true, True, or even tRuE.)
Internally, TRUE = 1 and FALSE = 0. When you use ECHO with a Boolean value, the result
depends on the value. For true, ECHO prints 1; for false, ECHO prints nothing at all. Listing
22 (Booleans.php in the materials for this session) demonstrates. The output is shown in
Figure 10; note that there are only 5 values and all are 1.

Listing 22. The Boolean constants are case-insensitive. Internally, they’re represented by 1 (TRUE) and 0
(FALSE)

<?php
 $b1 = TRUE;
 $b2 = True;
 $b3 = true;
 $b4 = tRuE;
 $b5 = FALSE;
 $b6 = TRUE;

 echo $b1, $b2, $b3, $b4, $b5, $b6;
?>

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 14 of 55

Figure 10. When you ECHO Booleans, only the true values are printed (as 1).

PHP offers the usual operators for Boolean values, as well as one that not every language
offers. There are two ways to write the And and Or operators, but they have different
precedence. && for And and || for Or are evaluated before the assignment operators. The
actual keywords AND and OR have the lowest precedence. In each of the cases, the And
operator has higher precedence than the Or operator.

In addition to those operators, PHP uses ! for Not and XOR for exclusive OR. The Not
operator has very high precedence, while XOR falls between AND and OR.

Comparison operators

PHP has a full set of comparison operators, with a couple of twists. The equal sign is used
only for assignment (and in the assignment operators). To compare two values, you use
two or three equal signs together. Two equal signs, ==, is a basic equality comparison; if
necessary, data types are coerced to allow the comparison. Three equal signs, ===, called
identity, tests for both equality and the same type. Listing 23 (EqualityTests.php in the
materials for this session) demonstrates the difference between them, as well as the
coercion of types for the equality test. Figure 11 shows the results; as noted earlier, ECHO
doesn’t print anything for False.

Listing 23. The equality operator coerces data types. The identity operators returns True only when types, as
well as values, match.

<?php
 $Year = 2019;
 $StrYear = '2019';
 echo 'Equality, using ==: ',$Year == $StrYear,nl2br("\n");
 echo 'Identity, using ===: ',$Year === $StrYear,nl2br("\n")
?>

Figure 11. PHP offers two operators to test equality. One considers type while the other doesn’t.

PHP offers two ways to test for inequality, != and <>; they’re equivalent. In addition, there
are the usual operators for greater than (>), greater than or equal (>=), less than (<) and
less than or equal (<=).

PHP 7 and later offers one unusual comparison operator, <=>, called spaceship (probably
because of its appearance). It compares two integer values and returns a single value based
on the comparison: 1 if the left-hand value is greater, 0 if they’re equal, -1 if the right-hand
value is greater. Listing 24 (Spaceship.php in the materials for this session) demonstrates;
the result here is -1.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 15 of 55

Listing 24. The spaceship operator returns 1, 0 or -1 to indicate how the specified integers compare.

<?php
 $Year = 2019;
 $LastYear = 2018;
 echo $LastYear<=>$Year;
?>

Operator Precedence

Because PHP has many, many operators (including quite a few not discussed in this paper),
operator precedence is complicated. Fortunately, the rule taught in school still applies:
parentheses, exponents, multiplication/division, addition/subtraction. But the other
operators have to be worked in, as well.

There’s another twist as well, called associativity. It determines which direction you work
with operators of equal precedence. Because the familiar arithmetic operators all have the
same associativity (left), this isn’t something we’re used to thinking about. That is, 12 / 8 *
4 is seen as (12 / 8) * 4 rather than 12 / (8 * 4). But some of PHP’s operators have right
associativity. One of them is the exponentiation operator, so 2 ** 3 ** 4 is seen as 2 ** (3 **
4), which is a pretty big number. Table 3 shows the operators discussed in this paper, in
precedence order, and the associativity of each. Use parentheses to change the order of
evaluation (or to make your code more readable).

 Table 3. To figure out how PHP evaluates an expression, you need to know both the precedence and
associativity of the operators it uses.

Operator(s) Associativity
** Right
++
--

Right

! Right
*
/
%

Left

+
-
.

Left

<
<=
>
>=

Non-associative

==
!=
===

!==

<>

<=>

Non-associative

&& Left
|| Left

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 16 of 55

Operator(s) Associativity
=

+=

-=

*=

**=

/=

.=

&=

Right

AND Left
XOR Left
OR Left

To see the complete set of rules, check the Operator Precedence topic in the PHP manual:
https://www.php.net/manual/en/language.operators.precedence.php.

Arrays

PHP uses arrays extensively. PHP arrays can contain data of different types and can even
contain other arrays. Arrays in PHP are zero-based; that is, the index for the first element is
0, for the second is 1, and so on.

Arrays can be specified as key => value pairs, or as just a list of values. (In fact, within an
array, you can mix the two, but it’s not a good idea.) When you choose key => value pairs,
the key can be numeric or string. An array that uses key => value pairs is called an
associative array. An array without keys is called an indexed array.

You can specify an array using the ARRAY keyword, followed by parentheses that enclose
the values, or with no keyword and square brackets. Listing 25 (DeclareArrays.php in the
materials for this session) shows the definition of a couple of arrays; their contents are
then displayed using the PRINT_R() function. The output is shown in Figure 12.

Listing 25. Arrays in PHP can be created as indexed or associative; associative arrays have a key for each
value.

<?php
 $Organizers = ['Doug', 'Rick', 'Tamar'];

 $Person = Array(
 "First" => 'Tamar',
 "Last" => 'Granor',
 "Age" => 60
);

 print_r($Organizers);
 echo nl2br("\n");
 print_r($Person);

https://www.php.net/manual/en/language.operators.precedence.php

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 17 of 55

?>

Figure 12. The PRINT_R() function is handy for displaying arrays while testing.

To refer to elements of an indexed array, you use its index (again, counting from 0). For an
associative array, you use the element’s key. Listing 26 (AccessArray.php in the materials
for this session) demonstrates, using the same arrays as in the previous example.

Listing 26. The way you reference an array element depends on whether the array is associative or indexed.

<?php
 $Organizers = ['Doug', 'Rick', 'Tamar'];

 $Person = Array(
 "First" => 'Tamar',
 "Last" => 'Granor',
 "Age" => 60
);

 echo $Organizers[1], nl2br("\n");
 echo $Person["Last"];
?>

PHP supports multidimensional arrays. In PHP, that term means an array where one or
more elements are themselves arrays, as in Listing 27 (MultilevelArray.php in the
materials for this session). Note that each contained array can have a different number or
even a different set of items. Here, the last contained array has more items than the other
two. The result is shown in Figure 13; in this case, VAR_DUMP() provides more readable
output than PRINT_R().

Listing 27. A PHP array can contain other arrays. The contained arrays do not have to have the same or even
similar structures.

<?php
 $Organizers = array(
 "Doug" => array(
 "First" => "Doug",
 "Last" => "Hennig",
 "Company" => "Stonefield"
),
 "Rick" => array(
 "First" => "Rick",
 "Last" => "Schummer",
 "Company" => "White Light"
),
 "Tamar" => array(
 "First" => "Tamar",
 "Last" => "Granor",

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 18 of 55

 "Company" => "Tomorrow's Solutions",
 "Age" => 60
)
);

 var_dump($Organizers);
?>

Figure 13. VAR_DUMP() provides more readable output for multi-level arrays than PRINT_R().

To reference elements of a multidimensional array, you supply an index or key for each
level inside square brackets. So, for example, to find Rick’s company or Tamar’s age, you’d
write the expressions in Listing 28.

Listing 28. To reference elements of a multidimensional array, you provide the index or key for each level,
each in its own square brackets.

$Organizers['Rick']['Company']
$Organizers['Tamar']['Age']

You can omit indices or keys from the right in order to refer to an entire contained array.
Listing 29 shows the array of Doug’s information being assigned to a new variable.

Listing 29. You can address an entire array within a multidimensional array.

 $ItsDoug = $Organizers['Doug'];

It’s possible for some dimensions in a multidimensional array to use indexes while others
use keys. For example, the array defined in Listing 30 (MixedArray.php in the materials for
this session) uses an index for the first level, and keys for the second. In this case, that
makes things a little confusing, as the result in Figure 14 shows. Here, the array element
with index 0 refers to the data for the number 1, and so on.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 19 of 55

Listing 30. Some levels in a multidimensional array can use indexes, while others use keys. (In fact, they can
be freely mixed even within a level, but that’s likely to lead to confusion.)

<?php
 $Powers = array(
 array(
 "number" => 1,
 "square" => 1,
 "cube" => 1
),
 array(
 "number" => 2,
 "square" => 4,
 "cube" => 8
),
 array(
 "number" => 3,
 "square" => 9,
 "cube" => 27
),
 array(
 "number" => 4,
 "square" => 16,
 "cube" => 64
)
);

 var_dump($Powers);
?>

Figure 14. Different levels in a multidimensional array can make different choices about indexes or keys.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 20 of 55

Again, you use the index or key for each dimension to specify a particular element. Listing
31 shows the way you’d reference the square for 2; since the index starts at 0, the element
where number = 2 has the index 1. Obviously, in an application, it’s a good idea to define
things so that you avoid the cognitive dissonance of this example.

Listing 31. Even when some dimensions use indexes and others use keys, the notation for referencing a
particular element is the same.

$Powers[1]['square']

Objects

PHP is a mixed procedural and object-oriented language. Many built-in capabilities are
available in both procedural and object-oriented forms. Creating your own classes in PHP is
beyond the scope of this paper, but this section covers enough of PHP’s object-oriented
capabilities to make it possible to work with classes and objects that are built into the
language or available via extensions.

To create a new object from an existing class, use the NEW keyword. For example, PHP
implements datetimes (and some related concepts) via classes. So, one way to create a
datetime variable is to use NEW, as in Listing 32 (CreateObject.php in the materials for this
session); Figure 40 shows the result, which indicates the properties of DateTime.
(However, these properties are protected and cannot be accessed in code.)

Listing 32. In PHP, datetimes are objects, so NEW creates a new one.

<?php
 $today = new datetime;
 print_r($today);
?>

Figure 15. DateTimes are objects in PHP.

The operator to refer to a property or call a method of a class is ->. In Listing 33
(UseObject.php in the materials for this session), after creating a DateTime, its format
method is called to generate attractive output. The result is shown in Figure 40.

Listing 33. Use -> to refer to a property or method of an object.

<?php
 $today = new datetime;
 echo $today->format('Y-M-j');
?>

Figure 16. The DateTime class has a Format method to produce attractive output.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 21 of 55

The sections “Date and Time creation and conversion functions” and “Date Math functions,”
later in this document, cover working with and formatting DateTimes.

Control Structures
PHP has a large set of control structures. Most of them should be familiar to most
developers, even if they use a slightly different syntax or format.

All of the control structures that include blocks of code require those blocks to be wrapped
in curly braces if they are more than one line. There’s no keyword like ENDIF or ENDDO to
indicate the end of a control structure.

Many of the control structures require an expression, as well. Those are wrapped in
parentheses.

For example, the usual structure for an IF with an ELSE case is shown in Listing 34. For a
full discussion of IF, see the next section, “Conditional structures.”

Listing 34. In PHP control structures, conditions to evaluate are enclosed in parentheses, while blocks of code
are enclosed in curly braces.

if (condition) {
 // commands to execute if condition is true
} else {
 // commands to execute if condition is false
}

Conditional structures

PHP has two structures that let you decide which branch of code to execute: IF and
SWITCH.

IF has a number of variations. As in other languages, the simplest form takes a condition
and executes some code if that condition is true. Listing 35 shows a simple example (that
assumes some earlier code has set the variable $result).

Listing 35. The simplest IF statement checks a condition and executes some code if it’s true.

if (!$result)
 echo "Failure”;

PHP supports an else case, as well. Listing 36 expands the previous example to handle both
success and failure.

Listing 36. As in other languages, IF has an optional ELSE clause.

 if ($result)
 echo "Success";
 else
 echo "Failure";

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 22 of 55

IF also supports the ELSEIF keyword that lets you lay out multiple cases without having to
nest IFs. The code in Listing 37 (IFwithELSEIF.php in the materials for this session) does
what the spaceship operator does as well as providing output.

Listing 37. With ELSEIF, you can test a series of conditions without nesting IFs.

 if ($Value1 == $Value2) {
 echo "Equal";
 $Result = 0;
 }
 elseif ($Value1 > $Value2) {
 echo "Larger";
 $Result = 1;
 }
 else {
 echo "Smaller";
 $Result = -1;
 }

The SWITCH commands lets you act on multiple values of the same expression. The
structure is shown in Listing 38. There are a few important things to note. First, SWITCH
handles only a single expression; you can’t evaluate a whole condition in each case. This
also means that the expression following the SWITCH keyword is evaluated only once.
Second, once you find a matching value, execution continues until the end of the command
unless you use BREAK to exit. Third, the DEFAULT case is optional; if you omit it and no
cases match, no code is executed.

Listing 38. PHP’s SWITCH command is a limited form of CASE statement.

switch (expression) {
 case value1:
 //code when expression = value1
 break;
 case value2:
 //code when expression = value2
 Break;
 …
 default:
 //code when no other case was true
}

The code in Listing 39 checks the variable $year and determines three things: whether it’s
a leap year, whether it’s a presidential election year and whether it’s a congressional
election year. (In the US, presidential elections occur in years divisible by 4 and
congressional elections in all even years.) However, we can do better than this code. We
want the same behavior when the year mod 4 is 1 or 3. With SWITCH, we can combine
those cases, as in Listing 40 (Switch.php in the materials for this session).

Listing 39. SWITCH provides a way to check a series of values for an expression.

<?php

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 23 of 55

 $year = 2018;

 switch ($year%4) {
 case 0:
 if ($year%100 <> 0 or $year%400 == 0) {
 $LeapYear = true;
 }
 else {
 $LeapYear = false;
 }

 $Presidential = true;
 $Congressional = true;

 break;
 case 1:
 $LeapYear = false;
 $Presidential = false;
 $Congressional = false;
 break;

 case 2:
 $LeapYear = false;
 $Presidential = false;
 $Congressional = true;
 break;

 case 3:
 $LeapYear = false;
 $Presidential = false;
 $Congressional = false;
 }

 echo $year, " is ";
 if (!$LeapYear)
 echo "not ";
 echo "a leap year. It is ";
 if (!$Presidential)
 echo "not ";
 echo "a presidential election year and is ";
 if (!$Congressional)
 echo "not ";
 echo "a Congressional election year."

?>

Listing 40. If you want the same code for multiple values in a SWITCH, just list all the cases together and then
put the code.

 switch ($year%4) {
 case 0:
 if ($year%100 <> 0 or $year%400 == 0) {
 $LeapYear = true;
 }
 else {

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 24 of 55

 $LeapYear = false;
 }

 $Presidential = true;
 $Congressional = true;

 break;

 case 1:
 case 3:
 $LeapYear = false;
 $Presidential = false;
 $Congressional = false;
 break;

 case 2:
 $LeapYear = false;
 $Presidential = false;
 $Congressional = true;

 }

Loops

PHP offers four loop structures: WHILE, DO-WHILE, FOR and FOREACH. Each is useful in
different situations.

WHILE evaluates a condition at the top of the loop and continues looping as long as the
condition is true. If the condition is initially false, the code inside the loop is never executed.
Listing 41 (While.php in the materials for this session) shows a simple example that
figures out when the next Presidential election is starting with a given year. Note that
because there’s only one line of code inside the loop here, curly braces aren’t needed
(though they’re not prohibited either). Figure 17 shows the result.

Listing 41. The WHILE command creates a condition-controlled loop with the condition evaluated on the way
in.

<?php
 $startyear = 2018;
 $year = $startyear;

 while ($year%4 <> 0)
 $year ++;

 echo "The next presidential election year, starting with $startyear, is $year";

?>

Figure 17. The code in Listing 41 produces this output.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 25 of 55

DO-WHILE is the same as WHILE except that the condition is evaluated at the end of the
loop and thus, the code inside the loop is executed as least once. Listing 42 (DoWhile.php
in the materials for this session) shows the Presidential year calculation using a DO-WHILE
loop. The two examples produce the same results, except when $startyear is already a
presidential election year, as in this example. The result is shown in Figure 18.

Listing 42. With a DO-WHILE loop, the code inside the loop is executed at least once because the condition
isn’t tested until the end.

<?php
 $startyear = 2016;
 $year = $startyear;

 do
 $year ++;
 while ($year%4 <> 0);

 echo "The next presidential election year after $startyear is $year";

?>

Figure 18. This is the output from the example in Listing 42.

PHP’s FOR loop is typically a counted loop, but actually has much more capability than that.
You provide a starting expression, an ending expression, and an expression for changing
the value of the ending expression, all enclosed in parentheses and separated by semi-
colons, as shown in Listing 43. The starting expression is evaluated once at the beginning
of the loop. Then, the ending expression is evaluated. If it’s True, the statements inside the
loop are executed. Then, the change expression is evaluated, at which point the ending
expression is tested again. Execution continues in that manner until the ending expression
is False when tested.

Listing 43. A PHP FOR loop is based on three expressions: the first is evaluated only once; the second is
tested on the way into the loop and at the beginning of each pass; the third is used to modify conditions, so
the loop eventually ends.

for (starting expr;ending expr;change expr) {
 //commands inside loop
}

Most often, the change expression increments or decrements a counter created by the
starting expression and tested in the ending expression. In Listing 44 (For.php in the
materials for this session), the variable $year is initialized to 2019 and incremented on
each pass through the loop; the loop ends when $year is more than 2030. The output is
shown in Figure 19.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 26 of 55

Listing 44. The most typical FOR loops initialize a variable, increment or decrement it each time through the
loop, and end when a particular value is reached.

<?php
 for ($year=2019; $year <= 2030; $year++){
 if ($year%4 == 0)
 $status = "Presidential and Congressional elections";
 elseif ($year%2 == 0)
 $status = "Congressional elections";
 else
 $status = "no Federal elections";

 echo nl2br("In $year, there are $status.\n");
 }
?>

Figure 19. The code in Listing 44 uses a loop to figure out the status of a series of years.

It’s worth nothing that FOR loops can be much more complex. You can actually initialize
multiple variables in the starting expression and perform multiple actions in the change
expression.

The final control structure is FOREACH, which makes it easy to loop through arrays. The
simplest form of the command assigns one value of the array to a variable, which can be
used inside the loop; the syntax is shown in Listing 45.

Listing 45. FOREACH loops though arrays. In this form, on each pass, the next element of the array specified
by arrayexpression is assigned to $value.

foreach (arrayexpression as $value) {
 // commands inside loop
}

In Listing 46 (ForEach.php in the materials for this session), the array $years contains a
list of years. The loop goes through and figures out the status of each listed year in turn.
The results are shown in Figure 20.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 27 of 55

Listing 46. With FOREACH, it’s easy to process each element of an array.

<?php
 $years = array(1958,1963,1977,1982,1986,1995,1999,2008,2017);

 foreach ($years as $year){
 if ($year%4 == 0)
 $status = "Presidential and Congressional elections";
 elseif ($year%2 == 0)
 $status = "Congressional elections";
 else
 $status = "no Federal elections";

 echo nl2br("In $year, there are $status.\n");
 }
?>

Figure 20. The code in Listing 46 processes a series of values contained in an array.

FOREACH works with multidimensional arrays, too, assigning an entire row to the
specified variable. Listing 47 (ForEachMulti.php in the materials for this session) uses the
array of Southwest Fox organizers created in an earlier example to generate some text
about who they are; the output is shown in Figure 21.

Listing 47. When a FOREACH loop is based on a multidimensional array, it loops through the top dimension,
assigning the contained arrays to the variable in turn.

<?php
 $Organizers = array(
 "Doug" => array(
 "First" => "Doug",
 "Last" => "Hennig",
 "Company" => "Stonefield"
),
 "Rick" => array(
 "First" => "Rick",
 "Last" => "Schummer",
 "Company" => "White Light"
),
 "Tamar" => array(
 "First" => "Tamar",
 "Last" => "Granor",

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 28 of 55

 "Company" => "Tomorrow's Solutions",
 "Age" => 60
)
);

 $OrgNames = '';
 foreach ($Organizers as $Org) {
 if ($OrgNames <> '')
 $OrgNames .= ', ';

 $OrgNames .= $Org['First'].' '.$Org['Last'];
 };

 echo "The organizers of Southwest Fox are: $OrgNames";
?>

Figure 21. Using a FOREACH loop allows us to collect the list of organizers.

FOREACH can also populate a variable for the key on each pass, along with the variable for
the value. Listing 48 (ForEachKey.php in the materials for this session) shows an example,
using the same data as in Listing 47; the key is displayed along with the company data for
each organizer. Figure 22 shows the results.

Listing 48. An alternative form of FOREACH provides the key as well as the value of each array item.

 $Info = '';
 foreach ($Organizers as $Key => $Org) {
 $Info .= $Key.': '.$Org['Company'].nl2br("\n");
 };

 echo $Info;

Figure 22. You can ask FOREACH to give you the key for each item along with the value.

Functions
PHP has a long list of built-in functions and the ability to define your own functions. In
addition, PHP supports extensions that add functions to the language. Later in this paper,
we’ll look at extensions that support access to databases.

This section looks at the built-in functions you’re most likely to need and then shows you
how to write your own functions.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 29 of 55

Built-in functions

PHP has dozens of built-in functions, but there are a handful that you’re likely to use over
and over.

String functions

With strings, you’re likely to use STRLEN(), SUBSTR(), STRTOUPPER(), STRTOLOWER(),
STRPOS() and TRIM() often.

STRLEN() accepts a string and returns its length. As you’d expect, leading and trailing
blanks are counted.

The SUBSTR() function lets you extract part of a string, using the syntax shown in Listing
49. The start position is zero-based, so to extract the first character in the string, pass 0. If
you omit the length parameter, the function returns the rest of the string, beginning with
the specified start position.

Listing 49. SUBSTR() returns part of a string, based on the start position and length you pass.

$cResult = substr($string, $start, $length)

STRTOUPPER() and STRTOLOWER() convert the string to pass to all upper and all lower,
respectively. PHP also has functions to capitalize just the first character (UCFIRST()) and
the first character of each word (UCWORDS()) in a string.

Use STRPOS() to find one string within another; the syntax is shown in Listing 50. The
start position and the return value are zero-based. If the second string is not found in the
first, the function returns False. (The PHP documentation refers to the first parameter as
haystack and the second as needle.) STRPOS() is case-sensitive; for case-insensitive
matching, use the otherwise identical STRIPOS() function.

Listing 50. STRPOS() searches for one string within another and returns the position where it’s found.

$position = strpos($stringtosearchin, $searchtosearchfor, $startposition)

The code in Listing 51 (StrFuncs.php in the materials for this session) demonstrates these
five functions.

Listing 51. There are a handful of string functions you’re likely to use often.

<?php
 $sentence = 'Now is the time for all good men to come to the aid of their
country.';

 $length = strlen($sentence);
 $first5 = substr($sentence, 0, 5);
 $upper = strtoupper($sentence);
 $lower = strtolower($sentence);

 $goodpos = strpos($sentence, 'good');

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 30 of 55

 echo "Original string is $length characters".nl2br("\n");
 echo "First five characters are $first5".nl2br("\n");
 echo "Upper case sentence is $upper".nl2br("\n");
 echo "Lower case sentence is $lower".nl2br("\n");
 echo "Good appears at position $goodpos".nl2br("\n");
?>

Figure 23. PHP has lots of functions that operate on strings.

The TRIM() function removes a variety of white space from the beginning and end of a
string. The types of white space it removes are shown in Table 4.

Table 4. The TRIM() function can return characters other than spaces.

Character Removes ASCII value
" " Spaces 32
"\t" Tabs 9
"\n" New line/Linefeed 10
"\r" Carriage return 13
"\0" NUL 0
"\x0B" Vertical tab 11

You can fine tune what the function removes by passing the optional second parameter.
Pass a single string listing the characters you want removed. You can actually pass any
characters at all, not just the ones in Table 4.

Listing 52 (Trim.php in the materials for this session) demonstrates both the basic version
of TRIM() and what happens when you pass the second parameter. The examples put a
colon before and after the trimmed string to show you where it begins and ends. The
output is shown in Figure 24.

The first example omits the second parameter, so all kinds of white space are trimmed. In
the second example, only spaces are removed; since the original string doesn’t have spaces
at the beginning or end, nothing is removed. The third example removes the tabs at the
beginning of the string, but not the spaces. The last two examples show that the order in
which you pass the characters to remove doesn’t matter. In all the examples except the
first, the CRLF at the end of the string isn’t removed, so the second colon appears on a new
line.

Listing 52. TRIM() removes lots of kinds of white space by default, but you can specify exactly what to
remove.

<?php
 $messy = "\t\t Something \r\n";

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 31 of 55

 echo nl2br(":".trim($messy).":\n");
 echo nl2br(":".trim($messy," ").":\n");
 echo nl2br(":".trim($messy,"\t").":\n");
 echo nl2br(":".trim($messy,"\t ").":\n");
 echo nl2br(":".trim($messy," \t").":\n");
?>

Figure 24. The TRIM() function lets you remove pretty much anything from the beginning and end of a string.

Date and Time creation and conversion functions

There are a number of functions that let you get date and time values and convert them
from one type to another. The ones you’re likely to use often are listed in Table 5. They
differ in what type of value they accept as parameters and what type they return.

Table 5. There are a number of ways to get your hands on datetime values.

Function Purpose
GETDATE() Returns the current (or a specified) date and time as an array.
DATE() Returns the current (or a specified) date and time as a string formatted as specified.
DATE_CREATE() Returns a datetime for the specified date and time string.
DATE_FORMAT() Returns the specified datetime as a string in the specified format.

GETDATE() fills an array with information about the current date and time, or the datetime
you can optionally pass as a parameter. There are 11 elements, ranging from seconds to
day of the month to day of the week. All of elements have descriptive keys, except for the
last, which contains the number of seconds since the Unix Epoch (that is, midnight January
1, 1970). Figure 25 shows an example produced by sending the results to VAR_DUMP().

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 32 of 55

Figure 25. A call to GETDATE() produces an array with 11 elements containing many aspects of the current
date and time.

DATE() accepts a format string and optionally a datetime and returns either the current
date and time or the one you passed in the specified format.

There’s a long list of things you can include in the format string. Table 6 shows the most
common. You can find the full list in the documentation for the DATE() function at
https://www.php.net/manual/en/function.date.php.

Table 6. PHP gives you many ways to format a datetime. Here are the most common.

Character Part Effect Values or examples
d Day Two-digit day of the month (with leading zeroes) 01 to 31
D Day Three-character day of the week Mon through Sun
j Day Day of the month without leading zeroes 1 to 31
l (lowercase
L)

Day Full name of day of the week Monday through Sunday

F Month Full name of the month January through
December

m Month Two-digit month number (with leading zeroes) 01 to 12
M Month Three-character name of the month Jan through Dec
n Month Month number without leading zeroes 1 to 12
Y Year Four-digit year 1999, 2019
y Year Two-digit year 99, 19
a Time Lowercase am or pm am, pm
A Time Uppercase AM or PM AM, PM
g Time 12-hour format of hour without leading zeroes 1 through 12
G Time 24-hour format of hour without leading zeroes 0 through 23
h Time Two-digit 12-hour format of hour (with leading

zeroes)
01 through 12

H Time Two-digit 24-hour format of hour (with leading
zeroes)

00 through 23

i Time Two-digit minutes (with leading zeroes) 00 through 59
s Time Two-digit seconds (with leading zeroes) 00 through 59

Listing 53 shows some examples of typical ways of formatting dates and times. In each
case, it’s formatting the date and time the command was run.

https://www.php.net/manual/en/function.date.php

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 33 of 55

Listing 53. PHP provides many ways to format dates and times.

<?php
 echo date('Y-M-j').nl2br("\n");
 echo date('n/j/Y g:i:s A').nl2br("\n");
 echo date('l, F j, Y').nl2br("\n");
 echo date('H:i:s').nl2br("\n");
?>

Figure 26. Dates and times can be formatted in many ways in PHP.

What you can’t tell from the previous example is that the information is returned in UTC
format, not based on the current time zone. Use the DATE_DEFAULT_TIMEZONE_SET()
function before working with datetimes to tell PHP what time zone you’re in (or want to
use, anyway). In Listing 54 (DateFunction.php in the materials for this session), the default
time zone is set to my home zone of “America/New_York”; Figure 27 shows the results in
that case.

Listing 54. To ensure that dates and times reflect a local time zone, you can set the desired time zone before
calling DATE().

<?php
 date_default_timezone_set('America/New_York');
 echo date('Y-M-j').nl2br("\n");
 echo date('n/j/Y g:i:s A').nl2br("\n");
 echo date('l, F j, Y').nl2br("\n");
 echo date('H:i:s').nl2br("\n");
?>

Figure 27. These results reflect my home time zone.

However, that setting lasts only for the code you’re running. After running the previous
example, I commented out the call to DATE_DEFAULT_TIMEZONE_SET() and ran the code
again and I was back to UTC time. If you want all your code to run in a time zone other than
UTC, you can set the default in the PHP.INI file that should be part of your configuration.

Beyond that, some of the datetime functions let you specify the desired time zone or the
offset from UTC. (In fact, though it’s not shown in Table 6, you can specify time zone or
offset from UTC in a date format.)

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 34 of 55

DATE_CREATE() accepts a date and time as a string and returns a datetime value. If you
omit the parameter, it returns the current date and time (in UTC time). The function
accepts a wide range of formats for the parameter; they’re documented at
https://www.php.net/manual/en/datetime.formats.php. Listing 55 (DateCreate.php in the
materials for this session) demonstrates a couple of possibilities; note the inclusion of the
time zone for the $keynote variable. The results are shown in Figure 28.

Listing 55. The DATE_CREATE() functions turns a string into a datetime.

<?php
 $today = date_create();
 $birthday = date_create('1958-09-28');
 $keynote = date_create('24-Oct-2019 07:00:00 PM -08:00');

 print_r($today);
 echo "
";
 print_r($birthday);
 echo "
";
 print_r($keynote);
?>

Figure 28. You can create datetime values using DATE_CREATE().

While PHP is pretty smart about inferring the format from the string you supply, if you’re
concerned about ambiguity, you can instead use the DATE_CREATE_FROM_FORMAT()
function, which accepts both the datetime string and a format string in order to return a
datetime value. Be aware that the format string is the first parameter.

DATE_FORMAT() accepts a datetime and a format string and returns a string showing the
specified date in the specified format. It’s especially useful for taking data that comes from
a database and formatting it for display. Listing 56 (DateFormat.php in the materials for
this session) demonstrates; the output is shown in Figure 29.

Listing 56. The DATE_FORMAT() function converts a datetime to a string, using a specified format.

<?php
 date_default_timezone_set('America/Phoenix');
 $today = date_create();

 echo date_format($today, 'Y-M-j').nl2br("\n");
 echo date_format($today, 'n/j/Y g:i:s A').nl2br("\n");
 echo date_format($today, 'l, F j, Y').nl2br("\n");
 echo date_format($today, 'H:i:s').nl2br("\n");
?>

https://www.php.net/manual/en/datetime.formats.php

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 35 of 55

Figure 29. DATE_FORMAT() lets you convert from datetime to string, in the format you specify.

Date Math functions

PHP also has functions for date math. DATE_ADD() and DATE_SUB() let you add or subtract
a time period to or from a datetime, while DATE_DIFF() lets you find the difference
between a pair of datetimes.

All three functions deal with date intervals. A date interval is an object with properties for
each component of a datetime (and more).

There is an ISO standard for specifying date intervals using strings; the components for
that format are shown in Table 7. To specify an interval, start with “P” and then follow it
with as many of the others as you need. Precede each with the quantity of those units. So,
for example, P6D is six days, P2Y3M is two years and three months, PT3H is three hours,
and P5DT12H is five days and 12 hours.

Table 7. Combine the components here you need to specify a date interval.

Component Meaning
P Period, required
Y Years
M Months
D Days
T Time, required if including any time components
H Hours
M Minutes
S Seconds

To turn one of these strings into a date interval object, use the NEW command, as in Listing
57.

Listing 57. You can create a date interval using an ISO standard format.

$twomonths = new DateInterval("P2M");

PHP also lets you create date intervals from strings with the function
DATE_INTERVAL_CREATE_FROM_DATE_STRING(). There’s lots of flexibility in what you
can pass to the function. It accepts the kinds of strings you might naturally type, though it
does not accept the ISO format. Listing 58 (DateIntervals.php in the materials for this
session) shows several examples; the results are shown in Figure 30.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 36 of 55

Listing 58. You can also create date intervals with a function call and a simple string.

<?php
 $today = date_create();

 $twomonths = new DateInterval("P2M");
 $fourweeks = date_interval_create_from_date_string('4 weeks');
 $twoandahalfhours = date_interval_create_from_date_string('2 hours 30 minutes');

 print_r($twomonths);
 echo "
";
 print_r($fourweeks);
 echo "
";
 print_r($twoandahalfhours);

?>

Figure 30. Date intervals have many properties, including each component of a datetime (except time zone).

DATE_ADD() accepts two parameters, a datetime and a date interval, and adds the date
interval to the original datetime. While the function returns the new value, note that it also
changes the first parameter.

DATE_SUB accepts the same two parameters, but subtracts the date interval from the
specified datetime and assigns the new value to the first parameter.

Listing 59 (DateAddSub.php in the materials for this session) demonstrates, using the date
intervals created in the previous example. Note the need to keep recreating the $today
variable in order to start from the current date and time. The results are shown in Figure
31.

Listing 59. The DATE_ADD() and DATE_SUB() functions add or subtract the specified interval to the specified
datetime, changing its value.

<?php
 $today = date_create();

 $twomonths = new DateInterval("P2M");
 $fourweeks = date_interval_create_from_date_string('4 weeks');
 $twoandahalfhours = date_interval_create_from_date_string('2 hours 30 minutes');

 echo "Today: ";
 print_r($today);

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 37 of 55

 echo "
Two months from now: ";
 print_r(date_add($today, $twomonths));
 echo "
Two months ago: ";
 $today = date_create();
 print_r(date_sub($today, $twomonths));
 echo "
Four weeks from now: ";
 $today = date_create();
 print_r(date_add($today,$fourweeks));
 echo "
Four weeks ago: ";
 $today = date_create();
 print_r(date_sub($today,$fourweeks));
 echo "
Two-and-a-half hours from now: ";
 $today = date_create();
 print_r(date_add($today,$twoandahalfhours));
 echo "
Two-and-a-half hours ago: ";
 $today = date_create();
 print_r(date_sub($today,$twoandahalfhours));
?>

Figure 31. DATE_ADD() and DATE_SUB let you add and subtract date intervals to and from datetimes.

DATE_DIFF() computes the difference between two datetimes and returns a date interval.
Listing 60 (DateDiff.php in the materials for this session) shows an example. It also uses
the DATE_INTERVAL_FORMAT() function to convert the dateinterval into days only.
Analogous to DATE_FORMAT(), DATE_INTERVAL_FORMAT accepts a date interval and a
format string and returns a formatted string. The format string for this function requires a
% symbol in front of each character; while it accepts many of the same format chararacters
as DATE_FORMAT(), some of them have different meanings here. The list is available at
https://www.php.net/manual/en/dateinterval.format.php. For this example, note that ‘a’
indicates the total number of days.

The output from the example is shown in Figure 32.

Listing 60. DATE_DIFF() computes the difference between two datetimes as a date interval.
DATE_INTERVAL_FORMAT() lets us display that difference in a desired format.

<?php
 $today = date_create();
 $swfox = date_create('2019-10-24');

 $untilswfox = date_diff($swfox, $today);

 echo "There are ".date_interval_format($untilswfox,'%a days')." until Southwest
Fox";
?>

https://www.php.net/manual/en/dateinterval.format.php

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 38 of 55

Figure 32. Use DATE_DIFF() to figure out how long between two datetimes.

Numeric functions

There are only a few numeric functions you’re likely to use often. As its name suggest,
ROUND() rounds numbers to a specified number of decimal places. RAND() generates
random numbers.

ROUND() accepts three parameters; only the first, the number to be rounded is required.
When only one parameter is passed, the number is rounded to an integer. The second
parameter is the rounding precision. Pass a positive number to specify decimal places; pass
a negative to specify rounding before the decimal point. Listing 61 (Round.php in the
materials for this session) shows each of these three cases, and demonstrates that you can
use ROUND() on integer values as well as floats. The results are shown in Figure 33.

Listing 61. ROUND() rounds numbers.

<?php
 $val = 1234.56789;
 $intval = 3767;

 echo round($val).nl2br("\n");
 echo round($val, 2).nl2br("\n");
 echo round($val, -2).nl2br("\n");
 echo round($intval, -1).nl2br("\n");
?>

Figure 33. ROUND() lets you round both floats and integers.

The optional third parameter lets you determine what happens when the leftmost digit to
be rounded is 5. There are four options, documented at
https://www.php.net/manual/en/function.round.php.

RAND() returns a random integer. If you pass no parameters, the value is in the range from
0 to a system-specified maximum (which you can look up with the GETRANDMAX()
function). Alternatively, you can pass a minimum and maximum to return values in a
different range. Listing 62 (Rand.php in the materials for this session) demonstrates, with
the results shown in Figure 34.

https://www.php.net/manual/en/function.round.php

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 39 of 55

Listing 62. The RAND() function returns random integers.

<?php
 echo rand().nl2br("\n");
 echo rand(1,27).nl2br("\n");
 echo getrandmax().nl2br("\n");
?>

Figure 34. Use the RAND() function to return random integers in a specified or default range.

Array functions

PHP has a huge collection of functions for working with arrays. This section looks at a few
that you’re likely to use often.

First, it’s worth noting that the ARRAY() notation for populating an array that was
introduced in “Arrays,” earlier in this document is, in fact, a function that accepts a set of
values and puts it into an array.

The ARRAY_PUSH() function lets you add elements to the end of an array. It isn’t strictly
necessary, since you can actually add elements directly. ARRAY_PUSH() accepts an array
and one or more items to add to it; items are added at the end. Listing 63 (ArrayPush.php
in the materials for this session) creates an empty array and then adds three elements,
creating the same array as the first executable line in Listing 25.

Listing 63. You can populate or add to an array with ARRAY_PUSH().

<?php
 $Organizers = array();

 array_push($Organizers, 'Rick');
 array_push($Organizers, 'Doug');
 array_push($Organizers, 'Tamar');

 print_r($Organizers);
?>

You can also add elements to an array simply by assigning them to the array. The code in
Listing 64 (ArrayDirectAdd.php in the materials for this session) has the same result as
that in Listing 63.

Listing 64. You can add elements to an array directly.

<?php
 $Organizers = array();

 $Organizers[] = 'Rick';

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 40 of 55

 $Organizers[] = 'Doug';
 $Organizers[] = 'Tamar';

 print_r($Organizers);
?>

While these examples use a one-dimensional array, the function and direct assignment
work for multi-dimensional arrays, as well. However, if you’re using an associative array,
the direct notation is better, as it lets you specify a key for the new value, as in Listing 65
(AssociativeArrayAdd.php in the materials for this session).

Listing 65. To add elements in an associative array, the direct notation is better.

<?php
 $Organizers = array();

 $Organizers['Rick'] = array(
 "First" => "Rick",
 "Last" => "Schummer",
 "Company" => "White Light"
);
 $Organizers['Doug'] = array(
 "First" => "Doug",
 "Last" => "Hennig",
 "Company" => "Stonefield"
);
 $Organizers['Tamar'] = array(
 "First" => "Tamar",
 "Last" => "Granor",
 "Company" => "Tomorrow's Solutions",
 "Age" => 60
);

?>

The SORT() functions sorts an array. Pass an array and the values are sorted in place. By
default, the sort order is determined by the data, so numbers are sorted numerically and
strings are sorted as strings. PHP is smart enough to sort numeric strings correctly
(avoiding the common problem of winding up with 1, 11, 12, 2, 3, 4, …). Listing 66
(ArraySort.php in the materials for this session) shows sorting of an array of numbers, an
array of numeric strings, and an array of names; the results are shown in Figure 35.

Listing 66. The SORT() function is smart enough to sort numeric strings correctly.

<?php
 $nums = array(37, 19, 7, 552, 11, 39, 98);
 $strs = array('37', '19', '7', '552', '11', '39', '98');
 $names = array('Tamar','Rick','Doug','Therese','Marshal');

 sort($nums);
 echo "Sorting numbers: ";
 print_r($nums);
 echo "
";

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 41 of 55

 sort($strs);
 echo "Sorting numeric strings: ";
 print_r($strs);
 echo "
";

 sort($names);
 echo "Sorting strings: ";
 print_r($names);
 echo "
";

?>

Figure 35. PHP’s SORT() function is pretty smart.

If you pass a multidimensional array, SORT() sorts based on the first element of each row.
So the code in Listing 67 (SortMultiDim.php in the materials for this session) produces the
results in Figure 36, with the data sorted by the “First” element.

Listing 67. Sorting a multidimensional array uses the first element at the lowest level.

<?php
 $Organizers = array(
 "Hennig" => array(
 "First" => "Doug",
 "Last" => "Hennig",
 "Company" => "Stonefield"
),
 "Granor" => array(
 "First" => "Tamar",
 "Last" => "Granor",
 "Company" => "Tomorrow's Solutions",
 "Age" => 60
),
 "Schummer" => array(
 "First" => "Rick",
 "Last" => "Schummer",
 "Company" => "White Light"
)
);

 sort($Organizers);
 var_dump($Organizers);

?>

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 42 of 55

Figure 36. When you sort a multidimensional array with SORT(), PHP bases the sort on the first element of
each item.

SORT() accepts an optional second parameter to specify how to perform the sorting; the
choices are documented at https://www.php.net/manual/en/function.sort.php.

Creating custom functions

As in most programming languages, you can define your own functions in PHP. The syntax
is similar to that of other languages, with its own PHP twist. Listing 68 shows PHP’s
function definition syntax.

Listing 68. The syntax for defining a function in PHP isn’t very different than in other languages.

function name($arg1, $arg2, … $argn)
{
 //commands
 return $retval;
}

You can put any PHP code inside a function. Functions are called as in other languages, by
specifying the function name and enclosing any parameters in parentheses. Listing 69
(SimpleFunction.php in the materials for this session) shows a simple function that accepts
a datetime and returns a string with the datetime formatted into a specific format; you
might use such a function in an application where this particular format is the standard.
Figure 37 shows the results.

Listing 69. This simple function transforms a datetime into a particular format.

<?php
 function MyDateFormat($date) {
 return date_format($date, 'l, F j, Y');
 }

 echo MyDateFormat(date_create()).nl2br("\n");

https://www.php.net/manual/en/function.sort.php

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 43 of 55

 echo MyDateFormat(date_create('1958-9-28')).nl2br("\n");
?>

Figure 37. You might use a function to format datetimes into a particular format.

PHP does not require you to define a function before using it, and doesn’t object to a
function definition in the middle of a block of code. So the code in Listing 70 is functionally
equivalent to that in Listing 69. More broadly, this means you can decide whether to define
functions are the top of a page or the bottom. (While you can put them in the middle, I don’t
recommend it; it’s not very readable.)

Listing 70. PHP doesn’t care whether functions are defined before you use them.

<?php
 echo MyDateFormat(date_create()).nl2br("\n");

 function MyDateFormat($date) {
 return date_format($date, 'l, F j, Y');
 }

 echo MyDateFormat(date_create('1958-9-28')).nl2br("\n");
?>

By default, parameters are passed to functions by value. To specify that a parameter is
passed by reference, precede that parameter with an ampersand in the function definition.
Listing 71 (PassByReference.php in the materials for this session) shows an example; the
result is shown in Figure 38.

Listing 71. You can specify that a particular function parameter is passed by reference by preceding it with
an ampersand in the function definition.

<?php
 function add_name(&$string) {
 $string .= "\r\nmodified by add_name";
 }

 $str = 'This is a test';
 add_name($str);
 echo nl2br($str);
?>

Figure 38. PHP functions can accept some parameters passed by reference.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 44 of 55

PHP also lets you specify a default value for a parameter. When you do so and omit that
parameter from the function call, the default value is used. To demonstrate, I’ve extended
the MyDateFormat function from Listing 69. The new version, shown in Listing 72
(DefaultParm.php in the materials for this session), accepts an optional second parameter
of format. If you omit that parameter, it uses the format that was built into the earlier
version of the function. The results are shown in Figure 39; note the difference in the
second call here from the previous example.

Listing 72. This version of MyDateFormat lets you pass a format, but if you don’t, it has one built-in.

<?php
 function MyDateFormat($date, $format = 'l, F j, Y') {
 return date_format($date, $format);
 }

 echo MyDateFormat(date_create()).nl2br("\n");
 echo MyDateFormat(date_create('1958-9-28'),'Y-F-j').nl2br("\n");
?>

Figure 39. Specifying a default parameter for a function lets you set up the behavior you usually want, but
still easily change it.

Using INCLUDE to create libraries of functions

You may want the same functions to be available on multiple pages. Save your collection of
functions in a file with a PHP extension. To make those functions available in another page,
put the INCLUDE command at the top of the page as in Listing 73. INCLUDEs can be nested,
so if you have a number of function files, you can create a single file that includes them all,
and then include that one file on your pages.

Listing 73. The INCLUDE command lets you make all the functions from another page available in the current
page.

<?php
 include 'myfunctions.php'

 //code that uses the functions in myfunctions.php

?>

The next major section of this document includes examples of such function libraries, in
this case, used for accessing databases.

Working with data
Many of the examples to this point may have seemed forced because variables were
populated and then used to demonstrate. But PHP also provides a way to retrieve data

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 45 of 55

from databases, including MySQL and SQL Server. Many of the features discussed earlier in
this paper really shine when processing data.

Database access is provided through extensions to PHP. There are both generic database
extensions and database-specific extensions. On the whole, if you’re going to be dealing
with a particular database, the database-specific extensions are easier to work with. In this
section, we’ll look at specific extensions for MySQL and SQL Server.

In order to use extensions, they have to be enabled in your PHP.INI file. When you install
PHP, the default INI file includes the necessary lines for many extensions, but they may be
commented out. Of course, the way you enable support on a webserver will depend on that
host’s tools.

For the examples in this section, we’ll work with the example Chinook database that’s
available for quite a few database servers. You can find Chinook at
https://github.com/lerocha/chinook-database.

Talking to MySQL with MySQLi

There are several extensions for working with MySQL data, but the most current is MySQLi,
which supports both an object-oriented approach and a procedural approach. Supporting
both means there are a set of MySQLi classes, but that the core functionality is also exposed
via a set of functions. Here, I’ll look at the functions. In fact, you can do most of what you
need with just a few functions.

To use MySQLi, you need to uncomment the line extension=mysqli in the PHP.INI file.

Connecting to a database

As with any code that uses an external database, step 1 is connecting to the database. The
relevant function is mysqli_connect(); the syntax is shown in Listing 74. All the parameters
are optional; their default values are lookups in the PHP.INI file. Listing 75 shows an
example connecting to the Chinook database as DemoUser.

Listing 74. Use mysqli_connect() to connect to a MySQL database.

$conn = mysqli_connect($host, $username, $password, $database, $port, $socket)

Listing 75. To make the connection, pass the appropriate values.

<?php
 $hostname = "localhost";
 $username = "DemoUser";
 $password = "demo";
 $database = "chinook";
 $conn = mysqli_connect($hostname, $username, $password, $database);
?>

Of course, it’s best to check whether the connection worked and handle the case where it
doesn’t. The function in Listing 76 (ConnectMySQL.php in the materials for this session)

https://github.com/lerocha/chinook-database

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 46 of 55

attempts the connection, and handles the error if it fails. The DIE() function used in the
error case halts the current code while returning the enclosed string. In this case, we call
the MySQLi function mysqli_connect_error() to return the error message that explains why
the connection failed.

Listing 76. This function attempts to connect to the Chinook database. It returns the connection object if
successful, and fails if not.

function connect2db() {
$hostname = "localhost";
$username = "DemoUser";
$password = "demo";
$database = "chinook";
$conn = mysqli_connect($hostname, $username, $password, $database);

if($conn == false) {
 echo "Connection could not be established.
";
 die(print_r(mysqli_connect_error(), true));
}

return $conn;
}

You might wonder why the username and password are hard-coded in this function. The
websites I’ve created with PHP are public sites where users don’t log in and data is
available to all. So all data is accessed using the same MySQL user. (Because PHP code isn’t
included in what’s shown when a user views the source of a web page, having the
username and password in the PHP code doesn’t expose it to the world.)

Sending and receiving data

To send commands to MySQL, use the mysqli_query() function. It sends a single command
to MySQL and returns the results. Although the name says “query,” it accepts all kinds of
MySQL commands. If something goes wrong, the return value is False.

The code in Listing 77 (GetMySQLData.php in the materials for this session) includes a
function runquery that’s a wrapper for mysqli_query(), and code that calls runquery. The
function uses the connect2db() function defined above. If the command fails, the function
calls mysqli_error() to find out what went wrong.

Listing 77. The code here sends a query to MySQL and reports whether it was successful.

<?php

$empquery = 'SELECT FirstName, LastName, BirthDate FROM employee;';
$emps = runquery($empquery);

if ($emps)
 echo 'query successful';

function connect2db() {
$hostname = "localhost";

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 47 of 55

$username = "DemoUser";
$password = "demo";
$database = "chinook";
$conn = mysqli_connect($hostname, $username, $password, $database);

if($conn == false) {
 echo "Connection could not be established.
";
 die(print_r(mysqli_connect_error(), true));
}

return $conn;
}

function runquery($query) {
 $conn = connect2db();
 $result = mysqli_query($conn, $query);

 if ($result == false) {
 $errmessage = mysqli_error($conn);
 echo $errmessage;
 die(print_r(mysql_error(), true));
 }

 return $result;
}

?>

Working with MySQL data

Of course, you’ll want to do more with the data you retrieve than just acknowledge that you
got it. The value returned from mysqli_query() is an object containing the results. MySQLi
provides a couple of ways to traverse those results.

The mysqli_fetch_object() function returns the next row of the results as an object. You can
use a loop to grab each row in turn, as in Listing 78 (EmployeesMySQLObject.php in the
materials for this session). For this and subsequent examples in this section, the
connect2db() and runquery() functions have been moved to a separate PHP file,
mysqldbfns.php, which is included in the page where we want to access data (and in the
materials for this session).

This example also demonstrates how a single page can mix PHP and HTML. You can simply
insert PHP code into HTML by bracketing it with <?php … ?>. The example also uses the <?=
…?> shorthand notation for expressions.

Figure 40 shows the result. It’s not particularly attractive, but making it prettier is just a
matter of adding HTML or CSS.

Listing 78. You can mix PHP and HTML in order to use data in a page.

<?php
 include 'mysqldbfns.php';

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 48 of 55

?>

<!DOCTYPE html>
<html lang="en">
 <head>
 </head>

 <body>
 <h1>Chinook employees</h1>

 <?php
 $empquery = 'SELECT FirstName, LastName, BirthDate FROM employee;';
 $emps = runquery($empquery);
 ?>

 <table>
 <tr>
 <td><h2>First name</h2></td>
 <td><h2>Last name</h2></td>
 <td><h2>Birthdate</h2></td>
 </tr>

 <?php
 while ($emp = mysqli_fetch_object($emps)) {
 ?>
 <tr>
 <td><?=$emp->FirstName?></td>
 <td><?=$emp->LastName?></td>
 <td><?=date_format(date_create($emp->BirthDate),'F j, Y')?></td>

 <?php
 }
 ?>

 </table>

 </body>

</html>

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 49 of 55

Figure 40. It doesn’t take much code to show data on a page.

One final note about this example: even though the BirthDate field is a DateTime in MySQL,
it comes to PHP as a string, and so has to be handled that way.

If you prefer to work with arrays rather than objects, you can use the mysqli_fetch_assoc()
function to turn a record of the query result into an associative array. Listing 79
(EmployeesMySQLAssoc.php in the materials for this session) shows the portion of the
previous example that changes when you do it that. In this case, to refer to a field of the
table, you use its name (capitalized as in the database) as the key for an element of the
array. The output, of course, is the same.

Listing 79. If you prefer, you can turn the rows of the query result into associative arrays rather than objects.

 <?php
 while ($emp = mysqli_fetch_assoc($emps)) {
 ?>
 <tr>
 <td><?=$emp['FirstName']?></td>
 <td><?=$emp['LastName']?></td>
 <td><?=date_format(date_create($emp['BirthDate']),'F j, Y')?></td>

 <?php
 }
 ?>

The key insight about both mysqli_fetch_object() and mysqli_fetch_assoc() is that they keep
track of where you are in the result and always return the next row.

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 50 of 55

Talking to SQL Server with SQLSRV

The SQLSRV extension lets you talk to SQL Server data. It’s procedural with functions to
perform all the necessary tasks. Unlike MySQLi, SQLSRV is not automatically installed when
you install PHP. To use it locally, you’ll need to download it and then add the necessary line
to PHP.INI. You’ll find instructions at https://docs.microsoft.com/en-
us/sql/connect/php/loading-the-php-sql-driver?view=sql-server-2017.

Connecting to a database

The sqlsrv_connect() function makes a database connection. It expects two parameters, the
host and a connection string. The connection string is passed as an associative array.
Listing 80 shows the very simple syntax. The function returns either a connection resource
or False, if a connection cannot be made. Listing 81 (ConnectSQLServer.php in the
materials for this session) provides a function for making the connection, including
handling failure.

Listing 80. The sqlsrv_connect() function lets you connect to SQL Server.

$conn = sqlsrv_connect($host, $connstr)

Listing 81. When you use sqlsrv_connect(), you should check the return value to see whether a connection
was made.

<?php
$conn = connect2db();
if ($conn)
 echo 'Connection made';

function connect2db() {
 $hostname = "localhost";
 $username = 'DemoUser';
 $password = 'mYdemoUser';
 $database = 'chinook';
 $connectionInfo = array("Database"=>$database, "UID"=>$username, "PWD"=>$password,
"CharacterSet"=>"UTF-8");
 $conn = sqlsrv_connect($hostname, $connectionInfo);

if($conn == false) {
 echo "Connection could not be established.
";
 die(print_r(sqlsrv_errors(), true));
}
return $conn;
}

?>

As in the MySQL examples, the username and password are hard-coded here because my
experience is that most websites use a single account to connect to a database.

SQLSRV has a single function for retrieving error messages, sqlsrv_errors(). Called after an
error, it returns information about the error that occurred.

https://docs.microsoft.com/en-us/sql/connect/php/loading-the-php-sql-driver?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/connect/php/loading-the-php-sql-driver?view=sql-server-2017

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 51 of 55

Sending and receiving data

The sqlsrv_query() function lets you send a command to SQL Server. As with its MySQL
analogue, any valid command can be sent. The function returns False if it fails.

Listing 82 (GetSQLServerData.php in the materials for this session) shows a runquery
function that wraps a call to sqlsrv_query() with some error handling. The runquery
function uses the connect2db() function to connect to the database and then, if a
connection was made, calls sqlsrv_query() to send the command it receives as a parameter.

Listing 82. The code to retrieve SQL Server data in PHP isn’t very different from the MySQL version.

<?php

$empquery = 'SELECT FirstName, LastName, BirthDate FROM employee;';
$emps = runquery($empquery);

if ($emps)
 echo 'query successful';

function connect2db() {
 $hostname = "localhost";
 $username = 'DemoUser';
 $password = 'mYdemoUser';
 $database = 'chinook';
 $connectionInfo = array("Database"=>$database, "UID"=>$username,
"PWD"=>$password, "CharacterSet"=>"UTF-8");
 $conn = sqlsrv_connect($hostname, $connectionInfo);

 if($conn == false) {
 echo "Connection could not be established.
";
 die(print_r(sqlsrv_errors(), true));
 }

 return $conn;}

function runquery($query) {
 $conn = connect2db();
 $result = sqlsrv_query($conn, $query);

 if ($result == false) {
 $errmessage = sqlsrv_errors();
 echo $errmessage;
 die(print_r(sqlsrv_errors(), true));
 }

 return $result;
}

?>

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 52 of 55

Working with SQL Server data

As with MySQL data, of course, you’ll want to do more than confirm that you were able to
send or receive data. The sqlsrv_fetch_array() and sqlsrv_fetch_object() functions put one
record of the result into an array or object, respectively. You can then use that data in
HTML code.

However, in order to use those functions, you must do so while the connection that created
them still exists. So it’s not good enough to simply return the resource returned by
sqlsrv_query() from the custom runquery() function and process it. Instead, you need to
loop through the results inside runquery() and build an array of results. Listing 83 shows
an updated version of runquery() that builds such an array and returns that array. The
second parameter to sqlsrv_fetch_array() indicates that the record should be retrieved as
an associative array. You can instead retrieve them as an indexed array by passing
SQLSRV_FETCH_NUMERIC or in both forms by passing SQLSRV_FETCH_BOTH.

Listing 83. With SQLSRV, it’s best to process the results in the same function that retrieves them.

function runquery($query) {
 $conn = connect2db();
 $result = sqlsrv_query($conn, $query);

 if ($result == false) {
 $errmessage = sqlsrv_errors();
 echo $errmessage;
 die(print_r(sqlsrv_errors(), true));
 }

 $rows = array();
 while ($row = sqlsrv_fetch_array($result, SQLSRV_FETCH_ASSOC)) {
 $rows[] = $row;
 }
 return $rows;
}

Using this function (as well as connect2db(), both contained in a new file
sqlserverdbfns.php, which in the materials for this session), the code in Listing 84
(EmployeesSQLServerAssoc.php in the materials for this session) produces the output in
Figure 40. One difference between the data returned by MySQL using MySQLi and that
returned by SQL Server using SQLSRV is the handling of datetimes. SQLSRV creates actual
datetimes rather than returning them as strings. Thus, the code doesn’t need to use
DATE_CREATE() to turn the string into a datetime for formatting.

Listing 84. Once you’ve put SQL Server data into an array, displaying it is straightforward.

<?php
 include 'sqlserverdbfns.php';
?>

<!DOCTYPE html>
<html lang="en">

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 53 of 55

 <head>
 </head>

 <body>
 <h1>Chinook employees</h1>

 <?php
 $empquery = 'SELECT FirstName, LastName, BirthDate FROM employee;';
 $emps = runquery($empquery);
 ?>

 <table>
 <tr>
 <td><h2>First name</h2></td>
 <td><h2>Last name</h2></td>
 <td><h2>Birthdate</h2></td>
 </tr>

 <?php
 foreach ($emps as $emp) {
 ?>
 <tr>
 <td><?=$emp['FirstName']?></td>
 <td><?=$emp['LastName']?></td>
 <td><?=date_format($emp['BirthDate'],'F j, Y')?></td>

 <?php
 }
 ?>
 </table>

 </body>

</html>

You can do the same thing by building an array of objects. Listing 85 shows an alternate
version of runquery() that uses sqlsrv_fetch_object() to build an array of objects; it’s
included in sqlserverobjdbfns.php.

Listing 85. This version of runquery returns the query results as an array of objects.

function runquery($query) {
 $conn = connect2db();
 $result = sqlsrv_query($conn, $query);

 if ($result == false) {
 $errmessage = sqlsrv_errors();
 echo $errmessage;
 die(print_r(sqlsrv_errors(), true));
 }

 $rows = array();
 while ($obj = sqlsrv_fetch_object($result)) {
 $rows[] = $obj;

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 54 of 55

 }

 return $rows;
}

Listing 86 (EmployeesSQLServerObject.php in the materials for this session) shows code
that uses this version of runquery() to produce the output shown in Figure 40.

Listing 86. This code produces the list of employees from an array of objects.

<?php
 include 'sqlserverobjdbfns.php';
?>

<!DOCTYPE html>
<html lang="en">
 <head>
 </head>

 <body>
 <h1>Chinook employees</h1>
 <?php
 $empquery = 'SELECT FirstName, LastName, BirthDate FROM employee;';
 $emps = runquery($empquery);
 ?>

 <table>
 <tr>
 <td><h2>First name</h2></td>
 <td><h2>Last name</h2></td>
 <td><h2>Birthdate</h2></td>
 </tr>

 <?php
 foreach ($emps as $emp) {
 ?>
 <tr>
 <td><?=$emp->FirstName?></td>
 <td><?=$emp->LastName?></td>
 <td><?=date_format($emp->BirthDate,'F j, Y')?></td>

 <?php
 }
 ?>
 </table>

 </body>

</html>

Resources
This paper is a starting point for working with PHP, but there’s plenty of material available
to take you farther. The PHP documentation is online at https://www.php.net/. Searching

https://www.php.net/

Getting Started with PHP

Copyright 2019, Tamar E. Granor Page 55 of 55

for PHP and the name of a function almost always yields the official documentation for that
function. The documentation includes comments and examples from users that often
provide additional insight.

Much of PHP is also documented at https://www.w3schools.com/. Again, searches
typically include w3school pages in the results. These pages often include simple runnable
examples.

Finally, for pretty much any web development subjects, StackOverflow is the premier
question-and-answer site.

https://www.w3schools.com/
https://stackoverflow.com/

	Introduction
	What is PHP?
	Getting Started
	Installing and configuring PHP
	Choosing an IDE

	Using PHP on a webpage
	PHP basics
	Terminating PHP statements
	Indicating comments
	Case-sensitivity
	Variables
	Generating output

	Data types
	Strings
	Numeric types
	Booleans
	Comparison operators
	Operator Precedence
	Arrays
	Objects

	Control Structures
	Conditional structures
	Loops

	Functions
	Built-in functions
	String functions
	Date and Time creation and conversion functions
	Date Math functions
	Numeric functions
	Array functions

	Creating custom functions
	Using INCLUDE to create libraries of functions

	Working with data
	Talking to MySQL with MySQLi
	Connecting to a database
	Sending and receiving data
	Working with MySQL data

	Talking to SQL Server with SQLSRV
	Connecting to a database
	Sending and receiving data
	Working with SQL Server data

	Resources

