
Making the Most of the Toolbox

Session 15

Tamar E. Granor, Ph.D.

Tomorrow’s Solutions, LLC

8201 Cedar Road

Elkins Park, PA 19027

Phone: 215-635-1958

Email: tamar@tomorrowssolutionsllc.com

Web: www.tomorrowssolutionsllc.com

The Toolbox offers a marriage of the Form Controls Toolbar and the Component Gallery. In this

session, we'll dig into this tool and show how to use it effectively. You'll learn how to organize

your classes, how to specify what's displayed at any time, and other tricks for customizing the

Toolbox.

mailto:tamar@tomorrowssolutionsllc.com
http://www.tomorrowssolutionsllc.com/

Starting in VFP 8, the Toolbox (shown in Figure 1) is the preferred tool for adding controls to

forms and classes. It combines the simplicity of the Form Controls toolbar with the flexibility of

the Component Gallery to provide a tool better than either.

Figure 1. The Toolbox. The Toolbox offers a marriage of the Form Controls toolbar and the Component

Gallery.

The Toolbox is divided into categories, each represented by a bar. Each category contains a list

of items. There are several types of categories and several types of items (described later). By

default, there are seven categories: Favorites, Text Scraps, VFP Base Classes, VFP Foundation

Classes, My Base Classes, My XML Web Services, and My ActiveX Controls.

Also by default, the VFP Base Classes category contains all the base classes, while My Base

Classes contains the first-level subclasses from the _Base library in the FoxPro Foundation

Classes. (You can change the contents of My Base Classes, but not VFP Base Classes. See

“Adding items to the Toolbox” below.) VFP Foundation Classes contains a number of the more

useful classes (like the About dialog and the Registry class) from the FoxPro Foundation Classes.

Opening the Toolbox
The easiest way to start the Toolbox is to click on the icon for it (a crossed hammer and wrench)

on the Standard toolbar. You can also open the Toolbox by choosing it from the Tools menu or

by issuing the command:

DO (_TOOLBOX)

The _TOOLBOX system variable points to the Toolbox application, by default, ToolBox.APP in

the home directory.

Unlike the Form Controls toolbar, the Toolbox doesn’t open automatically when you open the

Form Designer or Class Designer. (In fact, in VFP 8, the Form Controls toolbar doesn’t open

automatically any more unless you set it up to do so.) You might want to write a little program

that opens the toolbox, and then opens a specified form or class. A very simple version of such a

program might look like this:

LPARAMETERS cForm

DO (_TOOLBOX)

IF EMPTY(cForm)

 MODIFY FORM ? nowait

ELSE

 MODIFY FORM (cForm) NOWAIT

ENDIF

Once the Toolbox is open, it can be resized both horizontally and vertically. The size and

position of the Toolbox are stored in the resource file.

By default, the Toolbox is set to be always on top. You can change that setting from the context

menu. Another context menu item lets you turn off the Help text pane at the bottom of the

Toolbox, providing more room for the contents.

In VFP 9, the Toolbox can be docked. To make it dockable, right-click on the title bar, and check

the Dockable item. Once you've done so, the Toolbox can be docked to the VFP main window or

to other dockable IDE forms (such as the Command Window, View Window or Document

View).

Working with the Toolbox
You can do a variety of things with the Toolbox, but its principal function is to put controls onto

forms or classes. To open a category so you can access the items within it, click on the name of

the category. If the items in the category don’t fit in the Toolbox’s area along with the category

bars, up arrow and/or down arrow bars are added at the top and bottom to allow you to scroll

within the category. (In Figure 1, there’s a down arrow bar for the VFP Base Classes category.)

Click on one of the arrow bars to scroll up or down one item. Better, holding the mouse over one

of these bars scrolls continuously in the specified direction. (You can set the scroll rate—see

“Configuring the Toolbox” later in this document.)

When the Form Designer or Class Designer is open, double-clicking a control in the Toolbox

(whether one of the built-in controls, a subclass, or an ActiveX control) drops an instance of that

control onto the form or class you're designing. (If multiple instances of the Form Designer or

Class Designer are open, you choose which form or class to drop onto.) If a container class is

selected in the Designer, the new control is added to that container. If not, the new control is

placed in the upper left corner of the form or class.

You can also drag a control from the Toolbox and drop it onto a form or class. If you drop onto a

container control, the new control is added to the container; otherwise, it’s placed directly on the

form or class at the point you dropped it. (Dropping onto a container doesn’t require the

container to be selected.)

If you attempt to add a control to something that can’t hold the control, you get an error message

“Object class is invalid for this container.” For example, the error appears if you attempt to drop

anything other than an option button onto an option group.

Some classes, such as Exception and Session, are really meant only for programmatic use.

Attempting to add one of these to a form or class results in the message “This class has no visual

representation and therefore cannot be dropped onto this container.”

Some of the controls have additional smarts. If you attempt to add a page class to a form or class,

a pageframe is automatically added to hold it. Similarly, adding a grid column class to an

appropriate container other than a grid creates a one-column grid in the container. Adding a

single option button creates an option group.

The Toolbox is also handy when working with code. Drag an object out of the Toolbox into a

code editing window and a line of code instantiating the class is added. For example, if you drag

the Splash Screen class from the VFP Foundation Classes category into a code window, this line

of code is generated:

_splash = NEWOBJECT("_splash", "_DIALOGS.VCX")

In fact, this is really default behavior. You can specify two distinct behaviors for dragging into

code windows—see “Determining the behavior of class items” below. (One change you may

want to make is to include the path for the class library in the generated code. The default code

doesn’t include it, which isn’t a problem if you’re building an application, but might be for utility

code.)

Working with categories
The Toolbox supports five kinds of categories, as shown in Table 1. Table 2 shows the types for

the built-in categories.

Table 1. Toolbox category types. Each type of category has some unique characteristics.

Category type Purpose

General category Contains classes and other files.

Dynamic folder

category

Contains all or a specified subset of the files in a specified folder.

Registered ActiveX

controls

Contains ActiveX controls.

Text scraps Contains fragments of text, which may contain strings to be expanded

using text merge.

XML web services Contains registered XML web services.

Table 2. Built-in category types. The categories that come with the Toolbox demonstrate most of the types.

Category Type

Favorites Favorites (special type not available for new categories)

Text Scraps Text scraps

VFP Base Classes General

Category Type

VFP Foundation Classes General

My Base Classes General

My XML Web Services XML Web Services

My ActiveX Controls Registered ActiveX controls

Although each category has a type, you’re actually not restricted to putting items of the specified

type in the category.

Some of the category types provide special behaviors not included in the General category. For

example, a Dynamic folder category always includes all the items from the specified folder.

However, you can also add other items to the category if you wish. (See “Adding items to the

Toolbox” later in this document.) You see this behavior at work in the built-in My XML Web

Services category. This category (like all XML web services type categories) includes all

registered web services. However, it also includes a number of other items, such as Register and

Generic Handler.

To add a new category, open the context menu and choose Add Category. The dialog shown in

Figure 2 appears. Specify the name of the new category and choose its type. When you click OK,

the new category is added to the Toolbox, but in most cases, has no contents.

Figure 2. Adding a new category. When you choose to add a category, this dialog appears. Specify the name

and type of the new category.

To change the settings for a category, right click on the category name in the Toolbox and choose

Properties from the context menu. (If the category is expanded, you need to click on the category

name before right clicking.) The dialog that appears varies with the category type. Figure 3

shows the Category Properties dialog for a general category. Figure 4 shows the dialog for a

dynamic folder category. Table 3 shows the various items that appear in the Category Properties

dialog and indicates to which category types they apply.

Figure 3. Changing category settings. For a general category, you can set only a few items.

Figure 4. Setting dynamic folder category properties. When a category is the dynamic folder type, you can

also specify the folder and the type(s) of files listed.

Table 3. Category properties. The list of properties you can set for a category varies with the category type.

Property Applies to Notes

Category

type

All

category

types

Read-only, set when the category is created.

Category

name

All

category

types

Specifies the name displayed for the category in the Toolbox.

Help text All

category

types

Specifies the text shown in the Help pane at the bottom of the

Toolbox when the category bar has focus.

Help file All

category

types

Specifies a Help file containing Help for this category.

Property Applies to Notes

Help

context ID

All

category

types

Specifies the help context id for the topic that should be displayed

when Help opens. If this is specified and Help file is empty, it refers

to the VFP Help file.

Inactive All

category

types

Indicates whether the category is displayed in the toolbox at this time.

Folder Dynamic

folder type

Specifies the folder whose files are displayed for this category.

File type Dynamic

folder type

Specifies a set of file extensions. Only files in the specified folder

having those extensions are included in the category. One reason to

limit the extensions is so you see only the “main” file of items stored

across multiple files, like tables (DBF/FPT/CDX) or class libraries

(VCX/VCT). The various lists of extensions available include the

primary files, but not the supporting files.

Template XML web

services

type

Specifies a text merge template used for inserting the necessary code

to instantiate and use a web service. If empty, a default text merge

template is used.

Class

library

XML web

services

type

Specifies the class and class library used when a web service from

this category is dropped on a form or class.

Base class XML web

services

type

Indicates the base class of the class specified for the Class library

item. Read-only when a class and class library are specified. When no

class and class library are specified, this item is a drop-down list of

base classes, but it doesn’t appear to affect the behavior of items in

the category.

Object

name

XML web

services

type

The name used for web services dropped on forms or classes.

Properties XML web

services

type

Property settings to use when web services are dropped on forms or

classes. (See “Setting instance properties” below.)

Categories of the XML web services type have some properties that belong to individual items in

other types of categories. That’s because the XML web services type of category is dynamic, and

there’s no opportunity to specify these characteristics for the individual web services.

Working with items
While categories are helpful for organizing the Toolbox, it’s really the items within them that

make the tool useful. There are several ways to add items to the Toolbox, and quite a few things

you can do to customize their behavior once you’ve added them.

The Toolbox supports five types of items, listed in Table 4. Although most have a connection

with a particular category type, you can put any type of item into any category.

Table 4. Item types. The Toolbox allows you to add a variety of item types.

Item type Notes

ActiveX control All registered ActiveX controls are eligible.

Class Class libraries are added as a whole.

File Behaves in accordance with Registry settings.

Script Executes specified code and inserts return value.

Text scrap Inserts text where dropped. May use text merge.

Adding items to the Toolbox

Class items are added to the Toolbox a class library at a time. You can remove individual classes

within a library once you’ve added the whole library and you can hide some classes from a

library (see “Customizing the Toolbox” later), but there’s no way to add a single class from a

class library to the Toolbox.

The most obvious way to add class items is to choose Add Class Library from the context menu.

When you do so, the dialog shown in Figure 5 appears. The category defaults to the one

currently expanded, but you can choose any active category. When you specify the class library

to add and choose OK, all the classes in the specified library are added to the specified category.

Figure 5. Adding items to the Toolbox. You add an entire class library at once.

You can also add classes by dragging the class library from Windows Explorer and dropping it

onto the desired category. In this case, the dialog in Figure 5 never appears.

Both techniques for adding class items allow you to add both VCX-based and PRG-based

classes.

All types of items can also be added using the Customize Toolbox dialog (shown in Figure 6),

accessed through the context menu. (The General items in this dialog are discussed later, in the

section, “Configuring the Toolbox”.)

Figure 6. Adding items to categories. All types of items can be added through the Customize Toolbox dialog.

To add an item in the dialog, choose the correct category from the left pane, and then click the

Add Item button. The Add Item dialog shown in Figure 7 appears, with the default item type for

the category highlighted.

Figure 7. Adding an item. The first step is to indicate the type of item.

Once you choose an item type, you specify the item. The exact sequence of steps varies with the

Item type. For Class and File, the Open dialog appears to let you specify the class library (VCX

or PRG) or file (any type at all).

If you choose ActiveX control, the main body of the right pane changes to display a list of

registered ActiveX controls (as shown in Figure 8). You can choose one or more to add to the

category by checking them. Note also, in this case, the Select an item view drop-down list

changes to “ActiveX controls.” To return to a display of the category’s contents, you need to

change it back to “<all>.” (For more on this drop-down list, see “Managing categories” below.)

Figure 8. Adding ActiveX controls. All registered controls are listed. Check the ones you want to add to the

category.

Specifying Script or Text Scrap for the item type opens the Item Properties dialog, which is

described in the next section, “Setting item properties.”

When a category has the Dynamic folders type, you don’t need to add items to it explicitly. All

files in the specified folder with the specified extensions are added to the category automatically.

If you change the contents of the folder, you need to explicitly refresh the category. You do so by

choosing Refresh Category from the context menu or the Customize Toolbox dialog. (However,

dynamic folder categories are all refreshed when the Toolbox is closed and reopened.) Be aware

that all items are added to this type of category as File items, even if they contain classes.

Setting item properties

The context menu for items (other than those added automatically to Dynamic folder type

categories) includes Properties; choosing it opens the Item Properties dialog. The contents of the

dialog vary based on the item type. Figure 9 shows the dialog for a Class type item, Figure 10

shows it for a File type item, and Figure 11 shows it for a text scrap. (The dialogs for the other

item types aren’t shown here.)

Figure 9. Specifying item properties. This version of the Item Properties dialog is used for Class type items.

Figure 10. File item properties. For File type items, the Item type text box shows the type of the underlying

file, not just “File.”

Figure 11. Specifying text scraps. The properties dialog for text scraps and scripts let you specify the item

itself.

As with categories, many of the properties you can specify are the same for all types, while others

apply to only specific types. Table 5 lists the properties you can specify in the Item Properties

dialog.

Table 5. Item Properties. The list of things you can specify varies with the item’s type. Most intriguing is the

ability to set property values for instances of classes created from the toolbox.

Property Applies to Notes

Item type All item

types

Read-only; determined by the item type, and for File type items,

by the file’s type.

Item name All item

types

Specifies the name that appears for the item in the Toolbox.

Help text All item

types

Specifies the text shown in the Help pane at the bottom of the

Toolbox when the item has focus.

Help file All item

types

Specifies a Help file containing Help for this item.

Help context

ID

All item

types

Specifies the help context id for the topic that should be displayed

when Help opens. If this is specified and the Help file property is

empty, it refers to the VFP Help file.

Inactive All item

types

Indicates whether the item should be displayed in the Toolbox.

Class library Class,

ActiveX

control

Specifies the class library that contains the class or the OCX file

that contains the ActiveX control. Read-only; for Class items, an

ellipsis button allows you to choose the class and class library.

Base Class Class Specifies the class of the item. Read-only; an ellipsis button

allows you to choose the class and class library.

Property Applies to Notes

Class Name ActiveX

control

The ProgID of the ActiveX control. Read-only.

Object name Class,

ActiveX

control

Specifies the name of the control to create when this item is added

to a form or class or the name of the object variable when the item

is added to a code editor. For a Class item, normally the class

name. For an ActiveX item, by default, OLEControl.

Properties Class,

ActiveX

control

Specifies property settings to be performed on the fly as the item

is added to a form or class. See “Setting instance properties” later.

Builder Class,

ActiveX

control, File

Determines whether the builder for the item, if one is specified,

runs when the item is opened. There are three choices: Use

Builder Lock setting, Always invoke Builder, and Never invoke

Builder.

File name File The name of the associated file. This setting can actually be a call

to a program. (See the Register item in the My XML Web

Services category for an example.)

Text scrap Text scraps Specifies the text to be inserted when the item is used. May

include items to be evaluated via text merge.

Evaluate

using text

merge

Text scraps Indicates whether text merge should be performed on the text

scrap before inserting it.

Script Script Specifies the code to be executed when the item is used. The

return value of this code is inserted where the item is dropped.

Complete

drag script

Script Specifies code to be run after dropping the item. The return value

isn’t used, but you can perform interface or clean-up tasks.

The Text Scraps category comes with two Text Scrap items, one for writing bug reports and one

for program header comments. However, there are no Script items in the Toolbox as shipped.

Script items are useful for situations where you need to do significant processing before inserting

the results. The materials for this session include ClassBuilder.PRG, the code to use as the Script

value for a Script item that allows you to create code-based classes, adding properties and

methods in one step.

Using items

“Working with the Toolbox” above described the most common things you do with Toolbox

items: double-click or drag and drop them to add controls to forms and classes. However, the

Toolbox actually supports far more than this.

The context menu for each item varies depending on the item type. For classes other than the

VFP base classes, it includes Modify, which opens the Class Designer. For classes that can be

subclassed visually, the menu includes Create Subclass, which opens the New Class dialog. For

ActiveX controls, the context menu has Open in Object Browser. For form classes, the context

menu includes Create Form, which opens the Form Designer with a new form of the specified

class. When any forms or container classes are open in the Form Designer or Class Designer, an

Add to item is added to the context menu for many items. It points to a submenu showing each

available container and form. Choosing one of those items drops an instance of the class on the

chosen container or form.

The context menu for Text Scraps includes Copy to Clipboard. For File type items, the choices

vary with the file type, but most common are Modify and Run. When you choose Modify, the file

opens in its native editor (even if it’s a different application).

File items are displayed using hyperlinks. Clicking on a File item is equivalent to choosing

Modify for that item and opens it in its native editor.

Most items have Rename and Delete options on the context menu that do as their name suggests.

(Of course, deleting an item from the Toolbox doesn’t actually remove it from the class library.

Similarly, Rename affects the name you see in the Toolbox, not the actual name of the class.) In

addition, the context menu for all items includes Add to Favorites. Choosing it adds the item to

the Favorites category without removing it from the category it’s already in. This is an easy way

to have overall organization, but put the items you use all the time together.

Setting instance properties

The Item Properties dialog for Class items (shown in Figure 9) and for ActiveX items includes a

Properties section. This section lets you specify properties to be set in the Property Sheet when

the item is added to a form or class. When you click the Add button, the Set Object Property

dialog (shown in Figure 12) appears. (For ActiveX controls, the left-hand control is a text box

rather than a drop-down list.)

Figure 12. Setting properties on the fly. The settings you perform in this dialog are applied when you add the

item to a form or class.

To set a property, choose it from the drop-down list or type in the name, and then specify the

value you want in the Value text box. Note there’s no IntelliSense or other help for adding values

here. You need to know what the appropriate values are. After you click OK, the property setting

displays in the Properties area of the Item Properties dialog (as shown in Figure 13). Once

property settings are added there, you can use the Edit and Remove buttons to modify or delete

the settings. Double-clicking on a setting in the list opens the Set Object Property dialog with that

setting entered.

Figure 13. Instance property settings. After you add property settings, they’re displayed in the Properties edit

box, where they can be edited or removed.

It’s important to understand that setting properties in this way does not create new subclasses. It’s

more like a builder in that it sets properties for a particular instance. Don’t use this capability

when a subclass is appropriate.

However, there are two fairly cool things you can do by setting item properties. First, the value

you specify can actually be code. For example, you might set Caption to a value of

“(INPUTBOX(‘Specify caption’))”; when you add the control to a form or class, you’ll be

prompted to enter the caption. Note the extra parentheses around the function call; they’re needed

to force the value to be evaluated rather than just assigned to the property. However, don’t

include the outer quotation marks.

In addition, the property listings for member controls (Column Header, Grid Column, Option

Button, and Page) include some special properties that determine what happens when you drop

one of these controls onto something other than its normal container. Normally, the appropriate

container is added based on the VFP base classes, and then an object of the specified class is

added to it. The ContainerClass, ContainerClassLib, and MemberCount properties let you

determine what class the container is based on, and how many objects of the chosen class are

added. These properties do not appear anywhere except in this dialog.

Customizing the Toolbox
Given everything already described, you may be wondering what else we can possibly do to

customize the Toolbox. In fact, there are some more global changes you can make.

First, the context menu contains several toggles that affect the Toolbox as a whole. Builder Lock

determines whether builders appear for items set to follow the Builder Lock setting. Items in the

Toolbox ignore the global Builder Lock setting from the Options dialog on the Tools menu and

use the setting for the Toolbox instead.

Display Help Text determines whether the Help pane appears at the bottom of the Toolbox.

Always on Top determines whether the toolbox stays on top or drops behind other forms.

Most configuration of the Toolbox, though, is performed in the Customize Toolbox dialog

(shown in Figure 6 and Figure 8). In “Adding items to the Toolbox” earlier, one use for this

dialog was discussed, but it’s far more capable than just editing the list of items in a category.

The top section of the left pane provides access to items that affect the Toolbox as a whole.

Configuring the Toolbox

Figure 14 shows the General Options view of the dialog. This section contains a variety of

settings for Toolbox behavior, including the three that can be set from the context menu. Run

associated builders is the same as the Builder Lock context menu item. Display Toolbox help text

section corresponds to the Display Help Text item, and Always on top is a mirror of the Always

on Top context menu item.

Figure 14. Setting Toolbox behavior. The Options view of the Customize Toolbox dialog contains settings that

affect the Toolbox as a whole.

Show tooltips determines whether tooltips are displayed when the mouse hovers over an item.

The tooltips use the Help text specified for the items. If space is at a premium, turn off the Help

text section and leave tooltips on.

Double-click to open an item applies to File items. By default, a single click on a File item opens

it in its native editor. When this item is checked, it takes a double-click. If you find you often

open items by accident, consider changing this setting.

The next two items, Set CurrentControl property when a control is dropped on a grid column and

Prompt to remove Text1 control when dropping a new control on a grid column, combine to

determine what happens when you drop controls on grids. When the Prompt item is checked,

dropping a control on a grid column that contains a default text box named Text1 brings up the

dialog shown in Figure 15. If you answer Yes, not only is the control you’re dropping added to

the column, but the text box is deleted. When the Set CurrentControl option is checked, the

newly added control becomes the current control for the column. When this option is not

checked, CurrentControl isn’t set to the new control, even if you delete the default text box.

Figure 15. Replacing grid controls. When you drop a control onto a grid column, this dialog lets you get rid of

the default text box.

The final item in this section, Allow Toolbox to be minimized, adds a minimize button to the

Toolbox and enables the control box, putting Minimize on that list as well. This option works

only in VFP 8.

As noted in the section “Working with the Toolbox” earlier, holding the mouse over the arrows

at the top and bottom of a category scrolls within that category. The Category scroll speed

spinner lets you determine how fast the items scroll.

As you’d expect, the Toolbox table item points to the table that contains the Toolbox data.

Among other things, the ability to change this setting means you can maintain several toolbox

data sets (perhaps for different projects) and switch among them. (See “Filtering the Toolbox”

later in this chapter for an alternative approach.)

If the 8-point Tahoma the Toolbox uses by default doesn’t work for you, use the Font button to

choose your favorite font and size. (Unfortunately, it doesn’t change the font in any of the

associated dialogs.)

Finally, the two buttons at the bottom of this page let you clean up after yourself. Clean Up

Toolbox packs the Toolbox data to get rid of deleted records. Restore to Default restores the

original toolbox, though it gives you the option of keeping categories and items you’ve added. In

that case, all it does is restore the original items to their original settings (for example, removing

property settings you’ve added). A copy of the Toolbox table is saved as a backup.

Determining the behavior of class items

The Class Items view of the dialog (Figure 16) lets you determine how Class items are named

when added to the Toolbox and what happens when you drag Class items to code editing

windows.

Figure 16. Class item behavior. This page of the Customize Toolbox dialog determines default naming of

Class items and their behavior when dropped into code windows.

When you add a class library to the Toolbox, each item is given a name. The Default naming

convention option buttons determine the format of that name. (Keep in mind that you can change

the name in the Item Properties dialog or on the appropriate category’s page in the Customize

Toolbox dialog.) For a class called cmdMyButton in a class library named MyClasses, the three

options are:

 cmdMyButton (MyClasses)

 cmdMyButton

 MyClasses.cmdMyButton

The two edit boxes on this page control what happens when you drag a Class item onto a code

editing window. The Drag and drop text template is used for a normal drag, while the Ctrl+Drag

and drop text template is used for a drag with the Ctrl button held down. Whatever text you put

into the edit box is evaluated using text merge, and then dropped into the code editing window.

By default, dragging a VFP base class generates code like:

Text = CREATEOBJECT("Textbox")

Dragging any other Class item results in code using NewObject(), like this:

_checkbox = NEWOBJECT("_checkbox", "_BASE.VCX")

In both cases, the name used for the new object is the object name specified in the Item

Properties dialog. If this code isn’t what you want, write your own template in the dialog. Table

6 shows the data related to the item you can use in your template.

Table 6. Creating text templates. These pieces of data about the item you’re dropping are available for text

merge in templates.

Name Contains

BaseClass The base class of the item.

Name Contains

ClassLib The class library of the item, with complete path.

ClassName The name of the item’s class.

ObjectName The name specified for the object in the Item Properties dialog.

For example, to create documentation for a class, you might put this template in the Ctrl+Drag

and drop template:

Base Class: <<BaseClass>>

Class Library: <<ClassLib>>

Class Name: <<ClassName>>

Object Name: <<ObjectName>>

Filtering the Toolbox

The third page of the General section of the Toolbox (shown in Figure 17) lets you define and

manage filters that limit the categories displayed in the Toolbox at any time. When any filters are

defined, the context menu adds a Filters item that opens a submenu listing all defined filters.

Choose a filter from that list and the Toolbox displays only the categories specified for the filter.

You might use filters to manage the different class libraries needed for different clients or

different projects.

Figure 17. Managing filters. A filter contains one or more categories.

To define a filter, click the New Filter button. The new filter is added in the dialog and focus is

set to the Filter name textbox. Type the name for your filter, and then check the categories that

should be displayed for the filter. The Update button updates the name of the filter in the Defined

filters list.

You can edit any filter by clicking on it in the Defined filters list and changing the chosen

categories. As you’d expect, Delete Filter removes a filter from the list.

Apply Filter and Clear Filter let you set and remove a filter, but you can do that right from the

context menu as well.

Managing categories

The Categories pages in the Customize Toolbox dialog let you manage the list of categories and

their contents. Techniques for adding items to categories are discussed in “Adding items to the

Toolbox” above.

When Categories or any specific category is chosen, a button bar at the top of the dialog (shown

in Figure 18; see Figure 6 and Figure 8 for the whole dialog) lets you rearrange the list of

categories, add, remove and edit categories, and refresh an individual category or the whole

Toolbox.

Figure 18. Category management. This button bar appears in the Customize Toolbox dialog when a category

is chosen.

The Select an item view drop-down list controls what appears in the main pane of the dialog. The

choices in the drop-down list are “<all>,” “Visual FoxPro Class Libraries” and “ActiveX

Controls.” The button bar beneath the drop-down list changes based on the choice in the drop-

down list. When “<all>” is chosen, it contains buttons (Figure 19) for adding, removing, and

editing individual items, as well as sorting and rearranging items. When “Visual FoxPro Class

Libraries” is chosen in the drop-down list, the button bar (Figure 20) contains items for

managing entire class libraries. When “ActiveX controls” is chosen, no buttons are available.

Figure 19. Managing items in the Customize Toolbox dialog. When the item view is set to “<all>,” the button

bar lets you work with individual items. The up and down arrows let you rearrange items in the category.

Figure 20. Working with libraries. When the item view is set to “Visual FoxPro Class Libraries,” the buttons

manage entire libraries.

In any view, check or uncheck items to show or hide them in the Toolbox. The Show checked

items only check box in the dialog determines whether you see the hidden items while in the

Customize Toolbox dialog. Also, no matter what view you’re in, the Item Name column is

editable—changing it determines what appears for the item in the Toolbox.

Working with the source code

As with other tools written in VFP, the source code for the Toolbox comes with the product.

Source for all of the “Xbase tools” is in a file called XSource.ZIP in the HOME() +

“Tools\XSource” directory. When you unzip it (make sure to select the Use folder names option),

a new directory called VFPSource is created. Each tool has a subdirectory within that directory.

The Toolbox project is in a Toolbox directory.

You can modify or subclass any of the code used for the Toolbox and rebuild the application. By

default, the Toolbox is Toolbox.APP in the HOME() directory. You can change that by setting

the _TOOLBOX system variable.

By default, Toolbox data is stored in a table called Toolbox.DBF in the application data directory

(the one indicated by HOME(7)). As noted in “Configuring the Toolbox” earlier in this chapter,

you can change the location and file name.

The Toolbox table contains one record for each category and one for each item in the Toolbox.

Table 7 shows the fields in the Toolbox table.

Table 7. Toolbox data. The Toolbox table contains one record for each category and one for each item in the

Toolbox.

Field Type Purpose

UniqueID Character A unique identifier for the record. Recommended format is

“vendor.ID”. For records added through the Toolbox interface, “user”

is filled in for the vendor portion and SYS(2015) is used to provide

the ID portion.

ShowType Character Indicates the type of item. For example, “C” for category and “T” for

(tool) item. See Toolbox.H in the Toolbox project for the complete

list.

ToolTypeID Character The type of item. For categories, in the form

“Category.CategoryType”. For items, just “ItemType”.

ToolType Memo The type of item in readable format. This is the type that appears in

the Properties dialog.

ParentID Character For items, the UniqueID of the containing category.

ToolName Character The descriptive name of the category or item, as it appears in the

Toolbox.

ImageFile Memo The icon to use for the item. Not used for categories.

ClassType Character Indicates the type of item. “CATEGORY” for categories, “CLASS”

for class items, and so forth. For file items, the file type, such as

“APP.”

SetID Memo For class items, the containing class library. (Important because class

libraries are added and, sometimes, removed as a whole.)

ClassName Memo The name of the class used to process this item. For example, by

default, “_classtool” for class items and “_activetool” for ActiveX

items.

ClassLib Memo The class library containing the class named in ClassName. If empty,

_toolbox.vcx is used.

ToolTip Memo The help text for the category or item. This appears in the Display

Help pane and as a tooltip.

Field Type Purpose

HelpFile Memo The Help file (including path) containing Help for this item.

HelpID Numeric The help context ID for this item in the Help file specified by

HelpFile (or in the VFP Help file, if HelpFile is empty).

ToolData Memo Data for this category or item. For items, includes the class name,

class library, base class, and object name information, as well as the

list of properties to set in this instance. For file items, includes the

file name. For text scraps, includes the text to insert. For scripts,

includes the script. For ActiveX controls, includes the OCX file

name, the class name and the object name.

DisplayOrd Numeric The display order of this item. For categories, the position in which

the category appears. For items, the position of the item in the

category.

LockAdd Logical For categories, indicates whether items can be added. (True indicates

no additions are permitted.) Ignored for items.

LockDelete Logical Indicates whether the item or category can be deleted. When this is

set to True, Delete does not appear on the context menu and the

Remove Item button is disabled in the Customize Toolbox dialog.

LockRename Logical Indicates whether the item or category can be renamed. When this is

set to True, the Rename item does not appear on the context menu.

Inactive Logical Indicates whether the item or category is currently displayed in the

Toolbox. (True means the item or category is not displayed.)

User Memo Available for user-specified information.

Modified DateTime Time stamp of last change to item or category.

Finally, when the Toolbox is running, the variable _oToolbox contains an object reference to it.

The oToolboxEngine property points to the object responsible for much of the Toolbox’s

behavior.

Summary
The Toolbox is an amazingly capable tool. It offers the power of the Component Gallery without

its complexity. I use the Toolbox exclusively and never open the Form Controls toolbar any

more.

The material in these notes is excerpted from “What’s New in Visual FoxPro 8.0” by Tamar E.

Granor and Doug Hennig, Hentzenwerke Publishing and is copyright 2003, Tamar E. Granor and

Doug Hennig.

For additional information, see the series of articles by Cindy Winegarden in the January, April

and June 2003 issues of FoxPro Advisor. The June article shows some reasons you might want to

modify the Toolbox code.

Copyright, 2007, Tamar E. Granor.

