- 1

Try Thor' s Ter.

Tamar E. Granor
471717 001 x80 3711 O0E
Voice:215-635-1958
Email: tamar@tomorrowssolutionslic.com

The VFPX project, Thor, includes dozens of tools to aid in development. In this session, we'll
look at some of what Thor has to offer. The session will exptoneimber ofThor tools,

including Document View, Create Locals, Compare Objects, and much Wielkéalso see how
to make any Thor tool available with a keyboard shortcW/e'll also look at how to add your
own tools to Thor and, if time permits, how to set up user preferences for a tool.

One of the things that makes Visual FoxPro such a great téml developing software is the

open architecture that makes it easy to creat
experienced VFP developer who hasn’t written
the | DE. Some peopl e havfdevaopentbotsl(aed imiatmheingp ad’ s
able to add a menu pad is one example of VFP’

The VFPX website was created to allow VFP developers to share tools, and it now houses

quite a few developer tools (along with a bunch of components raat to be used in VFP

apps) . But it’s not a great way to share 1| itt
just a few lines of code, perhaps with no user interaction neede8omething where

creating a whole VFPX project would be overkill.

As the VFPX tool PEM Editor was reaching maturity, Jim Nelson and Matt Slay, its principal

authors and designers, found that there were lots of little tools they wanted and they

started adding them to PEM Editor. Butmnyof t hese | it t | eelevaatdol s wer €
managing properties, events and methods of forms and classes. PEM Editor just proved to

be a handy way of distributing them.

Eventually, they realized that what was really needed was a tool for managing tools, and
Thor was born. Thor is a tool ésigned to let you manage developer tools; it comes with a
whole set of tools, but is extensible so you can add your own developer tools, as well as
those you get from others. Thor allows you to assign hot keys to any installed tool, as well
as to create astom pads on the VFP menu and custom pagp menus accessed by hot keys.

I n this session, we’l/| | ook at a number of th
you want to bother changing the way you workSince most of the tools operate on code in

thelDE, we’' |l |l need to demonstrate on some progr
possi bl e, [use code that comes with VFP,

Foundation Classes).

Getting started with Thor

To use Thor, all you have to do is download itém VFPX and install it. The VFPX website
includes instructions for installing Thor at
http://vipx.codeplex.com/wikipage?title=Thor%20Install&referringTitle=Th or%20Help.
Once you’' ve eetwomewspadsonythe VFPImenu éséegurel) and the Thor
Configuration form will be open. The Thor pad contains items for mreaging Thor itself. The
Thor Tools pad contains the tools that come with Thor; you can add tools, as well as modify
and remove the builtin tools. You can also specify that anptl should run when Thor

starts, and assign a hot key to any tool. All of theghings are done using the Thor
Configuration form, available from the Thor menu pad.

Visual FoxPro 09.00.0000.7423 for Windows [Feb 23 2009 13:20:28] F

File Edit View Tools Program Window Help(Thor Thor Tools

—_ ~ e 1T -_—

Figure 1. Thor adds two pads to the VFP system menu.

To ensure that Thor opens each time you open VFP, add one line of code, showlristing
1, to your VFP startup program. The number you passsaparameter determines how
often the Thor Update process runs; pass a number of days. Thor Update hejpa keep
Thor and other tools from VFPX ugo-date.

http://vfpx.codeplex.com/wikipage?title=Thor%20Install&referringTitle=Thor%20Help

Listing 1. This line of code in your VFP staitip program checks for VFPX updates weekly.

DO D:\ Fox\ VFPX Thor\ Thor\ RunThor.PRG WITH 7

Once Thor is installed and settoruneadhi me you start VFP, you’'re |
exploring the tools it provides.Much of this document explores a subset of those tools, the
ones | find most compelling. You may find that others are your favorites.’ | | al so show

how to make any Thor toolsyou want easily accessible.

Highlight Control Structure
Menu: Code | Control Structures | Highlight Control Structure

|l work a | ot with other people’s code, that i
Someti mes, even beeawntoiufgyhi ngp thred pc anke girsars’'pt i t s
Hi ghlight Control Structure tool i's handy whe

trying to understand it. It highlights the entire structure where the cursor is found, whether
i t -ENDIF,FORENDFORDO CASE, SCAANDSCANDO WHILE TEXFENDTEXT or
TRY-CATCH If you run the tool a second time, it highlights the structure containing the one
you already highlighted. Subsequent uses continue to work their way outward.

For example Figure 2 shows a block of code from VFPXTAB.PRG. The cursor is positioned

on an assignment stat enfebnett weheant '“sltSdgasLi Ld’e aannd i
parenthesis). The IF block is inside a CASE statement, which is contained in a FOR loop. The

FOR loop is inside a SCAN loop.

SCAN
* sum the relevant fields
m.gtotal = .NULL.
FOR i = 2 TO FCOUNT() - 1

IF ISNULL(EVAL(FIELD(m.1i))
LOOP
ENDIF
IF ISNULL(m.gtotal) AND !ISNULL (EVAL(FIELD(m.i))
gtotal = 0
ENDIF
DG CASE
CASE THIS.totaltype = COUNT_FIELDS
* Count values
IF THIS.shownulls
gtotal = m.gtotal + IIF(ISNULL|(EVAL(FIELD(m.i))),0,1)
ELSE
cTmpField = field(m.1i)
gtotal = m.gtotal + IIF(ISBLANK(&cTmpField),0,1
ENDIF
OTHERWISE
* 3UM values
gtotal = m.gtotal + EVAL(FIELD(m.i))
ENDCASE
ENDFOR
IF THIS.totaltype = PERCENT_FIELDS
gtotal = IIF(m.sumallflds=0 OR ISNULL (m.gtotal) OR m.gtotal=0,0,RCUND (m.gtotal/m.sumallflds*100, THIS.nPercentFldDec))
ENDIF
REPLECE (m.totfldname) WITH m.gtotal
ENDSCAN

Figure 2. This block of code, drawn from VFPXTAB.PRG, has an IF inside a CASE, inside bé&®Rside a
SCAN loop.

Figure 3 shows the result of using Highlight Control Structure, whiléigure 4 shows the
code after the second application of Highlight Control Structure. Using the tool a third time
would highlight the entire FOR loop, and a fourth use highlights the whole SCAN. In fact,

this entire block of code is ingile another IF statement, and a fifth use of Highlight Control
Structure highlights that IF.

SCEN
* Sum the relevant fields
m.gtotal = .NULL.
FOR 1 = 2 TG FCOUNT() - 1
IF ISNULL(EVAL(FIELD(m.i)))
LOCP
ENDIF
IF ISNULL(m.gtotal) AND !ISNULL(EVAL(FIELD(m.1)))
gtotal = 0
ENDIF
DO CRSE
CRSE THIS.totaltype = COUNT_FIELDS
* Count values
THI wnulls
al = m.gtotal + IIF(ISNULL(EVAL(FIELD (m.i

))),0,1)

OTHERWISE

* 5UM values

gtotal = m.gtotal + EVAL(FIELD(m.1))
ENDCASE

ENDECR
IF THIS.totaltype = PERCENT FIELDS
gtotal = IIF(m.sumallflds=0 OR ISNULL(m.gtotal) OR m.gtotal=0,0,ROUND(m.g
ENDIF
REPLACE (m.totfldname) WITH m.gtotal
ENDSCEN

Figure 3. Using Highlight Control Structure on the code iRigure 2 highlights just the IF statement where the
cursor was positioned.

SCAN
* Sum the relevant fields
m.gtotal = .NULL.
FOR i = 2 TO FCOUNT() - 1
IF ISNULL(EVAL(FIELD(m.1)))
LOOP
ENDIF
IF ISNULL(m.gtotal) AND !ISNULL(EVAL(FIELD(m.i)))
gtotal = 0

“OUNT FIELDS]

gtotal + IIF(ISNULL(EVAL(FIELD(m.i))),0,1)

al + IIF(ISBLANK(&cTmpField},0,1)

>tal + EVAL(FIELD(m.i))

IF THIS.totaltype = PERCENT FIELDS
gtotal = IIF(m.sumallflds=0 OR ISNULL(m.gtotal) OR m.gtotal=0,0,ROUND(m.gto
ENDIF
REPLACE (m.totfldname) WITH m.gtotal
ENDSCEN

Figure 4. The second use of Highlight Control Structure highlights the entire CASE statement.

Of course, if you have to drill down through thee layers of menus to use this tool, it

probably won’t seem all that handy. However,
assign a keyboard shortcut to any tool. Befor
how you can do so.

Putting tools at your fingertips

Thor offers several mechanisms to make using its tools easier. The simplest is assigning a
keystroke combination to a tool, so you can use it without navigating the Thor Tools menu.
To do so, open the Thor Configuration form by choosing ThpConfigure from the menu.
Click the Tool Definitions tab to open the Tool Definitions page, and navigate in the

treeview on the left pane until you find the tool to which you want to add a hotkeyfigure 5
shows the Tool Definitions page with the Highlight Control Structure tool selected.

& Thor Configuration E@
Menu Definitions | Tool Definitions | Hot Key Assignments ” Options |

Filter Apply
..... T Applications Hot key [Clear] [Edit Tool]

=& Code ["1Run this tool when TW

------- ¥ Beautifyx o
Program: Thor_Tool_PEME_HighlightControlStructure PRG
"""" § Create LOCALs Source: IDE Tools

------- ¥ Dynamic Snippets
Description: Highlights the current control structure (If f EndIf, Try /
BT Control Structures
: Catch, Do Case / EndCase, etc).
-4 Highlight Control Structure

...\l Close Control Structure If used repeatedly, will highlight the next highest control structure,
ete.

£

m--T§ Highlighted Text Version: PEM Editor w/IDE Tools - 7,10.043 - May 7, 2012
- Highlighting text
E
B

=& Misc.

-5 Windows Tool home page

Create Tool Open Tool Folder

d:Yfox wipx\thor) Thor - 1.20. 18 - March 29, 2012

Figure 5. The Tool Definitions page of the Thor Configuration form lets yapedfy a keyboard combination to
run a tool.

Click the ellipsis button (indicated in the figure) and then, as the message that appears
(Figure 6) says, press the keyboardombination you want to use. Once you do so, the
message disappears, and the textbox shows the specified hotkeyFigure 7, you can see
that | ' ve s pas theihet Key fBriHiglilight+CGrttrol Structure.

Press the desired hotkey ...
Y 4 dit Tool

r [Esc] to cancel
in this tool b ve Toal

am: Thor_Tool_PEME_Highight_ontrolstructure, PRG
e: IDE Tools

iption: Highlights the current control structure (If f EndIf, Try [
|, Do Case [EndCase, etc).

Figure 6. After you click the ellipsis button for a hot key, this message appears. Do as it says to specify a hot
key.

=&l @

Hotkey shift-Ctrl-C | Clear | | EditTool |
Run this toal when Thor starts Remove Toal

Program: Thor_Tool_PEME_HighlightControlStructure . PRG
Source: IDE Tools

Figure 7. Once you type the dgred key combination, it appears in the hot key textbox.

The key combination you specify doesn’t take
Configuration form or click the Thor button at the topright of the form to refresh menus
and hot keys.

The Thor Wnfiguration form offers a couple of other ways to make individual tools more
accessible. You can modify the VFP system menu, adding entire pads, adding submenus to
the existing pads or adding tools directly to existing pads. So if you like using the mebut
find that the tools you want to use are buried too deeply in the Thor Tools menu, you can
put them where you want them.

In addition, you can create popup menus that appear when a specified key combination is

pressed. These are like rightlick menuse x cept that they’ ' re trigger ¢
combination you specify. These pojup menus can include whichever tools you choose, and

can have submenus, if you wish.

To modify the VFP system menu or to create a pagp menu, use the Menu Definitions page
of the Thor Configuration form. Figure 8 shows that page after clicking the Add Menu
button with the Popup Menus item highlighted. To define the popip menu, specify the
prompt (which appears only in the Thor Configuration form) and a hotkey for the popp.
Then, use the Add Tool button to add one or more tools to the pagp menu.

In Figure 9, thenewpopup menu has been defined and Thor ' ' s
control structures added.Figure 10 shows the newly defined popup over a code window.

E Thor Configuration

Menu Definitions | Tool Definitions ” Hot Key Assignments H Options ‘

BB o8 =)

EHTF VFP System Menu
- File
& Edit
‘H View
‘H Tools
“H Program
- Tg Window
H Help
‘H Tho\=r
“H Tho\<r Tools
Popup Menus
& New Menu

[Add Menu][Add SubMenu] l Add Tool ” Add Separator]

Prompt

Status bar

Hot key

e

Add as Top Level I [Copy menu]

Add as Popup Add Copied Menu

d:Yoxvfpwithor,

Thor - 1.20.18 - March 29, 2012

Figure 8. On the Menu Definitions page of the Thor Configuration form, you can add items to the VFP system

menu, and create your own pogup menus.

& Thor Configuration

Menu Definitions | Tool Definitions ” Hot Key Assignments H Options ‘

E=E R ==

E-F VFP System Menu
.. File
‘E Edit
‘H View
FH Toals
T Program
H Window
“F Help
F Tho\<r
“F Tho\<r Tools
Popup Menus
=& Control Strucutres (Ctrl-Alt-S)
& Highlight Control Structure (Shift-Ctrl-C)

y=il Close Control Structure

[Add Menu][Add SubMenu] [Add Tool][Add Separator]

Prompt Close Contral Structure EI
Summary Closes the current control structure by pasting EndIF, EndCase,

etc., as appropriate.
Statusbar | Closes the current control structure by pasting EndIF, EndCase,

etc., as appropriate.

Order E] [

Hot key

Remove Tool from Menu] [Edit Tool

B Clear

Program: Thor_Tool_PEME_EndControlStructure.PRG
Source: 1DE Tools

Description: Closes the current control structure by pasting EndIF, EndCase, etc., as
appropriate.

Version: PEM Editor w/IDE Tools - 7. 10,043 - May 7, 2012

Tool home page

d: Wfox\wipx\thorl,

Thor - 1.20. 18 - March 29, 2012

Figure 9. A popup menu has been defined, containing the two tools related to control striures.

ITF(ISNULL — - T
(Highlight Control Structure Shift-Ctrl-C
i) Close Control Structure
IIF (ISBELANRTECTNPE =IO Uy L7

Figure 10. When you use the shortcut for the pojup menu, it appears at the mouse position.

The ability to add hot keys, to modify the VFP system menu, and to define pop menus
makes it easy for you to decide whichThofool s you’re | i kely to use
easily accessible.

Edit Parent and Containing Classes
Menu: Parent Classes | Edit Parent and Containing Classes

This tool may well be theonenost | i kely to get people to use
weaknessesishat when you’ re editing a form or cl ass
i nheritance hierarchy of any member of the cl
working on a listbox on a form, and you realize that you need to change some code or a

setting in the class the listbox is based on, you have to close the form and then open the

|l i stbox c¢class. When you' r ®clab®thedistboeclassang c hange
reopen the form.

Whil e Thor can’t change that .ruThat'’'id what ntaki
about.l1't opens a small form showing the classes |
allows you to open any of them (after closing the current class or form). When you do so,

the form stays open to allow you to easily get tother listed classes; it also contains a

button to reopen the form or class you were originally editing.

For example, the Object Inspector that | built is based on a set of classes that Doug Hennig
published. The main form, shown irFigure 11, includes a container class called
sfTreeviewExplorer that incorporates a treeview and several other controls. When | run

the Edit Parent and Containing Classes towlith that object selected the form shown in
Figure 12 opens.It shows that the control is included in a Form class called
sfExplorerFormTreeview and that the controlis based on class sfTreeviewExplorer, which
inherits from sfTreeviewCursor, which inherits from sfTreeviewContainer, which inherits
from sfContainer.

= Form Designer - inspector.scx ‘ = ” =] ” 23 |
@ Object and Collection Inspector o= &=
El-Sample Node :
Sample Node Count | txtCount
- Sample Node Property Type Value -
ample Node 1 abl
4 P
<« [m 3

Figurell. The Object I nspector i s bas eedthecfiirceDemoploretenni g’ s E
container object is selected.
- Edit Parent Class and Containing Classes | = ||§| ‘&I
First: Save or dose the asrent form [dass
Thex Sdlect the parent dassfcontaining dass from the grid below.
Class Class Library Base Class o~
Sfexplorerformireevier .. WFPX Projects\Object Inspector\sfexplorer. Form
[sfireeviewexplorer .. WFPX Projects\Object Inspectorisfexplorer. container
=] sfireeviewcursor .. \WFPX Projects\Object Inspector\sfireeview container
[sfireeviewcontainer .. \WFPX Projects\Object Inspectorisfireeview container
=] sfrontainer .. \WFPX Projects\Object Inspector\sfctrls. vox container
[Modify Selected Class l [Return to Criginal l [Cancel l
Figure 12. The Edit Parent Class and Containing Classes tool opens this form to let you jump around among
the classes in an object’s heritage.
The f or m do e scate which aassasate inyhe inherdance hierarchy and which
are in the containership hierarchy. Both are included with the containership hierarchy
shown first. Figure 13 shows another example from the same form. Before opening the tool
this time, the timer control inside the treeview container was selected. The form shows
that the timer is contained on a form of class sfExplorerFormTreeview, and also contained
in a cantainer of class sfTreeviewExplorer, which inherits from sfTreeviewCursor and
sfTreeviewContainer. Finally, the timer is based on class sfTimer.
One thing inFigure 13 might be a little confusing. When looking at the container for the
timer, why does the |ist stop with sfTreeView
to sfContainer, asirFigurel2. The answer is that the tool do e

hierarchy for containing classes. What it does is show you every class in that hierarchy that
contains the specified object. S ethetimer;itt hi s e x

was added to sfTreeviewContainer, and then in
sfTreeviewCursor and sfTreeviewExplorer.

=y Edit Parent Class and Containing Classes | = | [O] |-

First: Save or dose the current form / dass

Then: Select the parent dass/containing dass from the grid below.

Class Class Library Base Class -~
[EE]sfexplorerformtreaview .. \WFPX Projects\Object Inspector\sfexplorer Form
=] sftreeviewexplorer .. \WFPX Projects\Object Inspector\sfexplorer container
=] sftreeviewcursor .. WFPX Projects\Object Inspector\sftreeview container
=] sftreeviewcontainer .. \WFPX Projects\Object Inspector\sftreeview container
iy sftimer .. WFPX Projects\Object Inspector\sfetrls.vex timer

il

| Modify Selected Class | | Return to Original | | Cancel |

L. &

Figure 13. This time, one of the timers inside the sfTreeviewExplorervas selected when this tool was run.

As the instructions at the top of the form indicate, before | can open any of those classes, |
have to close the Inspector form. But then, | can choose a class and click Modify Selected
Cl ass t o o p énshed dditing &d cosed thé Glass Designer, | can click Return
to Original to reopen the Inspector formexactly as | left it

Copying and pasting PEMs
Whil e you can copy an object in VFP and paste

native way togive one object the same property values and method code as another object.
A pair of Thor tools provides that capability.

Have you ever set up a control on a form, setting properties and adding code, and then
realized that you really want to use a diffeent type of control? For example, you may have
used a textbox and realizd you want an editbox, or started with a combobox and realized
you really want a listbox, or you might want to switch between two classes based on the
same base class. Configuring ¢hnew control to match the old one is something of a pain, as
you have to go one by one through the changed PEkfsoperties, events and methods)n

the Property Sheet for the original object, and for each, switch to the new object to set its
corresponding PEM.

Thor takes the pain away. It also makes it easy to configure a control on one form to match
or partially match oneon another form, as well as to insert a parent class into an
inheritance hierarchy.

Copy (for comparing and pasting)
Menu: Objects and?EMs | Copy / Paste | Copy (for comparing and pasting)

This tool lets you pick up all the modified PEMs for an object and store themn a special
clipboard. To use it, you simply select the object and choose this tool.

By itself, thusefoobl iIs$hst meanti bloybe foll owe
method code (described in the next section) or Compare with copied object (described
later in this document).

Paste properties and method code
Menu: Objects and PEMs | Copy / Paste | Paste propesti@and method code

This tool lets you set properties and methods to the values you previously copied from
another object. You can choose which PEMs to copy and whether to add properties and
met hods that don’t exist in the target object

The target object de&s not have to be basedn the same base class as the copied object.
That makes this tool great for those situations where you want to swah between two
similar classes (though the Réefine Parent Class tool, described later in this document,
actually provides a more direct way to accomplish this task).

Figure 14 shows a form that lets the user select a product (from the Northwind Products
table) using a combo. Upotesting, | might find that a listbox provides a better user
interface. With this pair of tools, | can change from one to the other in just a few steps.

= rorm Designer - chooseproduct.scx E@

.-/ Choose a product &3

cboProduct

Figure 14. This form uses a combobox to let the user choose a product.

After selecting the combo, choose the Copy (for comparing and pasting) tool to pick up its
properties and method code. Then, drop the listbox onto the form (presumably resizing the
form). Next, use the Paste properties and method code tool; the formkigure 15 appears.

2 Paste Properties and Method Code | =Nl X

l Select ‘ l De-5elect l Paste J l Cancel J
Items marked as Mew' cannot be pasted, as they do not exist.
New?Name Value in Copied Object Walue in This Object Org Typ Acc Asn Wis Fav -
= BoundColumn 2 1 N P
B BoundTo T F. N P
5! Height 24 170 N P =
F Init [User Procedure] N E
S Left 57 0 N P
F LostFocus [User Procedure] N E
e Name choProduct List1 NP
el Requery [User Procedure] N M
e m RowSource csrProducts (Hone) N P il
4 2

b r

Figure 15. The Paste properties and method code tool displays this form, which allows you to choose which
PEMs are copied to the target object.

You can choose which PEMs to copy to the target. Inthex a mp | e, you
to copy the Height property, sirte the whole point of using a listbox is to show more

probably

products at once. Once you' ve chosen the ones
When the targetisnotaformoraclass(t hat i s, the class that’'s b
Designer), properties that exist in the source, but notin the target are marked as New and

can’t be copied. However, when the target i s

create PEMs that don’t exi st

Suppose we decide that we’ d | i praucts.dAftecusiegat e a

the Copy (for comparing and pasting) tool, we can create a new combo class and then use
Paste properties and method code. The form that appears in this case is shownrrigure
16. (Of course, if you just want to turn a control on a form into a class as is, you can use

VFP's native Save As Class option. This tool
and you want to make a whole set ahodifications to match an existing control.)

Ay Paste Properties and Method Code | = | 5] |-

l Select ‘ l De-Select l Paste J l Cancel J

Create new properties / methods if they don't already exist?
New?Name Value in Copied Object Walue in This Object Org Typ Acc Asn Wis Fav P

5 BoundColumn 2 1 NP

2 BoundTo T .F. N P

g Init [User Procedure] N E E

& Y Left 57 NP

F LostFocus [User Procedure] N E

i Name choProduct choproducts NP

S Requery [User Procedure] N M

g RowSource carProducts (Hone) N P

& [V RowSourceType 2] N P il

b b

. A

Figure 16. When pasting PEMs to a class or form, you can add properties and methods on the fly.

Comparing objects
One of my favorite norVFP tools is Beyond Compare, which lets neempare folders and

files to find differences bet-ométpd/pfdolbtienm.- Wi t h
mi.com/Product/VEP2Text) , |l can even compare VFP cl asses
handy way to do so when |I’'m in the middle of e

to look at them with Beyond Compare.

Thor includes two different tools for comparing objects; both are pretty useful. Compare

with Parent Class lets you see which pperties of a class have nodefault values and

shows you the parent class’'s values for the s
lets you compare two unrelated objects.

Compare with Parent Class
Menu: Parent Classes | Compare with Parent Class

Although the VFP Property Sheet lets you see whi€tEMsof an object have been changed
from their default values (and even lets you see only nedefault PEMSs), it provides no easy
way to see what those values are in the parent class.

The Compare with Parent Giss tool opens a separate form that shows each naiefault
property, event and method in the selected object, along with its value in the selected
object and in the parent class. It alsmdicatesthose properties with the same value in both
places. Finaly, it allows you to reset any of the displaye®EMsof the selected object to
their default values.

Figure 17 shows the formDataNavSCXrom the Solution Samples that come with VFP. The

_tablenav object isselected Figure 18 shows the form opened by the Compare with Parent

Class tool(which is cleary a variation of the one used for the Paste properties and method

code tool). It indicates thatthree properties and five methodsh ave been set in th
Property Sheet. One of thos&Jame, is the same on the form as in the class.

http://pfsolutions-mi.com/Product/VFP2Text
http://pfsolutions-mi.com/Product/VFP2Text

-

= Form Designer - datanav.scx o || = &=

i

1| »

sy Add Navigationto Forms | o | @ || &2

---* Instructions

THISFORM _T ablshla. GoPrevious{) | -
THISFORM._T ablet av. GaMext(]

4 (I b

Figure 17.In this form from the Solutions Samplesan object based on the tablenavclass(from the FoxPro
Foundation Classes)s selected.

sy Compare with Parent Class H@éj

[Select] [De-Select Reset Selected Items to Default] [Cancel]
Same? Name Valug Value in Parent Class s

[} B Left 85 i

Y EH Name _tablenav _tablenav

O 5 Top 33 0

D =% dobottommessage [User Procedure]

|:| =% docyclebottommessage [User Procedure]

|:| =% docycletopmessage [User Procedure]

D = dotopmessage [User Procedure]

|:| =@ refreghuiafterchange [User Procedure]

. ’

Figure 18. The Compare with Parent Class tool shows only those properties whosdues are nondefault.

You can e the checkboxes to selestome or all of the PEMs shown and then click Reset
Selected Items to Default to clear those PEMs in the selected object. Properties that have
the same value as in the class are automatically atled.

The Select andDe-Select buttors opena dropdown menu(shown in Figure 19) that lets
you specify the type of item tacheck oruncheck.

]{ith Parent Class

Jame
eft

Properties
ame Methods

op
obottomm Events

ocyclebot Methods and Events
ocyclsten Top, Left, Height, Width

otopmess

Pr

Figure 19. TheSelect andDe-Select buttors of the Conpare with Parent Class tool lefyou choose the type of
item to check oruncheck

There's a reason this tool points out prope
class. ker y property that’'s set in the Property
during initialization of a form or other class. So having properties that are explicitly set to

the default value from the parent cliklgte can s

notice it unless there are many objects with many such properties).

rt
Sh

Compare with copied object
Menu: Objects and PEMS | Copy / Paste | Compare with copied object

The second Thor tool for code c opapdhtheisstofn r equ
copy-and-paste toolsfor classesd e s ¢ r i Gopyihg and pasting PEMs” ear |l i er i n =
document.

To use this tool, you must first select an object and usiee Copy (for comparing and
pasting) tool found on the same branch of the Thor menrhen select the object to which
you want to compare the fist object and choose this tool.

To demonstrate, we’ || | ook at the sClasse obj ect
even though that tool is a better choice in this case. Starting with the DataNav form, click on

the _tablenav object and choose Thor Tool€bjects and PEMsCopy / Paste | Copy (for

comparing and pasting). Now close the form and open the _tablenelass from _table.vcx in

the FFC folder (or better yet, use the Edit Parent and Containing Classes tool to open it).

When you choose this tool from the menu, the form shown iRigure 20 appears.

- ~
2y Compare Properties and Method Code | = [[S] [P
Name Walue in Copied Object “alue in This Object -

i [&5
5 Top 33
=% dobottormmessage [Uzer Procedure]
=% docyclebottommessage [User Procedure]
=% docycletopmessage [User Procedure]
=% dotopmeszage [User Procedure]
=% gobottom [Inherited] [User Procedure]
=5 gonext [Inheritad] [User Procedure]
=% goprevious [Inherited] [User Procedure]
=5 gotop [Inherited] [User Procedure]
=% gotorecord [Inherited] [User Procedure]
=% refreshuiafierchange [User Procedure] [Inherited]
)
4 T 3

Figure 20. This form appears when you use the Compare with copied object tool. It shows PEMs that are
different in the two objects.

PEMS with a gray background wloercolumnisealsogray. i n t h
I n the example, the _tablenav class doesn’t h
on the form, they’ re added. Met hods where a c

method in the example) exist, but have no code anywhe in the inheritance hierarchy up
to that class.

This tool seems particularly wuseful for situa
working, but other instances are. You can compare the PEMs of a working instance to those
of the nonworkingonetosee what you’ve done differently.

It also seems useful for figuring out whether two existing classes might productively share
a common parent class{\Whenthey can, the Paste properties and method code tool gives
you an easy way to jumpstart creation of the parent class.)

Re-Define Parent Class
Menu: Parent Class | RBefine Parent Class

Changing the class a control is based on has always been a bit of a petie. Class Browser

lets you do so, and there are various thirgbarty tools like HackCX that handlehe task as

wel | . But all of these approaches require you
that the tool can open it.This tool lets you make the change without closing the form or

class.

To use it, select the object whose parent class you mtao change, and choose this tool

from the menu. The form shown inFigure 21 appears; you use it to find the new parent

class. The form lets you specify thetypeofcass you’ re | ooking for (ir
and where to |l ook for 1t. The type can be a s
specify folder (as in the figure) or choose any of the projects on the MRU list. You can also

specify all or pat of the name of the class you want; unlike the usual VFP string

comparison, the portion you specify can be anywhere in the class name. Similarly, you can

provide part of a file name to limit the search.

r A"
Ly PEM Editor - Open Class E
@ Class: || [7] Exact Match
Base Class: | ComboBox EI “——
File Name: El [Exact Match
Scope. = % Folder El Stay open
Look in: D: WRITING\CONFS \SWFOX \SWFOX 20 12\THOR \EXAMPLES), [=] E]
["] search subfolders Current Folder
Class File Name Folder Parent Class Class Location -~
chogeneric Examples D: WWRITING\CONFS\SV combobox
Ll
4 | 1 [b

e

Figure 21. Find and selet the new parent class for an object using this form.

When you’'ve set up the type of

at the bottom of the form showsall classes that match your specifications. Choose the one
you want and clik the Select button to change the parent of the selected object to that

class.

The same dialog used for the Paste properties and method code and the Compare with
parent class tools opens, as iRigure 22, showing you properties and methods that are
different in the new parent and the existing object. Decide which of the changed values you

want to keep and click Paste.

wher

-

"
¥ Change parent class to Cbogeneric of examples.vex | = | (=] |ﬂ7—‘
Select | | De-Select | Paste | | Cancel |

MName Value in Copied Object Value in Thiz Object Org Typ Acc Asn Vis Fav -

F Y Inmit [User Procedure] N E

il | Left 57 0 N P

F |¥| LostFocus [User Procedure] H E

& Name choFroducts choProducts New 3IROX. N P =

% || Requery [User Procedure] H M

e ¥ RowSource csrProducts (None) H P

& || RowSourceType 2 0 N P

e || Top 12 -2000 N P

eE [/ Width 156 100 N P -

4 »

. "

Figure 22. Once you choose the new parent class, you have the opportunity to decide which property values
and method code should be kept.

Create Locals
Menu: Code | Create LOCALsS

| * vways knbwn that declaring all the variables used in a routine is a best practicand

since FoxPro morphed into VFP, that declaring all variables local is the best choice. But the
importance of the declarations was really brought home to me by one project. It involved a

VFP application that provided a user interface, but also instaisted a VFP COM object. The

COM object had a timer, and when the timer fired, the COM object could call methods of the
main application’s application object. Of cou
on in the main application.

While testing this code, we ran into some very weird errors with code working most of the

time, but every so often, behaving quite strangely. Eventually, we realized that many of the
problems were due to having undeclared variables (which, by default, are private rather

than local). The routines called by the timer code used some of the same variable names,

and when the variabl es we vaes'oftthedar@alesinthe act ual |
routine that was interrupted by the timer. Once we ensured that every variablin every

method was declared local, many of the problems went away.

I f only I °d had Thor back then. Thor’'s Create
adds the necessary local declaration&igure 23 shows a little block of code (that dumps

the list of forms in a project into a cursor); it uses several variables, but none of them are

declared.

xad) getformclassesinproject.prg * E@I

LPAREMETERS cProject

MODIFY PROJECT (cProject) NOWRIT
oProject = VFP.RctiveProject

CREATE CUERSCOR FormClasses (cClass C(30), nCount N(3))
INDEX on UPPER(cClass) TRAG cClass

SELECT 0
FOR ERCH oFile TN oProject.Files
IF oFile.Type = "K"
TRY
USE (oFile.Name) ALIAS _ Form
LOCATE FOR UFPPER (BaseClass) = "FORM"
cClassName = Form.Class
IF SEEK(UPPER(m.cClassName), "FormClasses"™, "cClass™)
REPLACE nCount WITH nCount + 1 IN FormClasses
ELSE
INSERT INTO FormClasses VALUES (m.cClassName, 1)
ENDIF
USE IN DBF(" Form")
CRTCH
ENDTRY

ENDIF
ENDFOR

Figure 23. This block of code uses seral undeclared variables.

Figure 24 shows the same block of code after running the Create Locals tool; the arrow
points to the local declarations.

nEd] getformclassesinproject.prg * EI@

LPRARAMETERS cProject o

LOCAL cClassName, oFile, oProject
MODIFY PROJECT (cProject] NOWAIT

oProject = VFP.RctiveProject

CRERTE CURSCR FormClasses (cClass C(30), nCount N(3))
INDEX on UPPER (cClass) TRG cClass

SELECT 0
FOR EACH oFile IN oProject.Files
IF oFile.Type = "K"
TRY
USE (oFile.Name) ALIAS _ Form
LOCATE FOR UPPER (BaseClass) = "FORM"
cClassName = Form.Class
IF SEEEKE(UPPER(m.cClassName), "FormClasses"™, "cClass"™)
REPLACE nCount WITH nCount + 1 IN FormClasses
ELSE
INSERT INTO FormClasses VRALUES (m.cClassName, 1)
ENDIF
USE IN DBF("_ Form")
CATCH
ENDTRY

ENDIF
ENDFOR

4 1 3

Figure 24. After running the Create Locals tool, the same block has variable declarations.

You can control some aspectOptiorstabdfthea Thort ool " s b
Configurationtool.

Figure 25 shows theOptions tab with settings for Creatd_ocalsdisplayed, andFigure 26

shows the choices in the Selection of variables dropdown. That dropdown lets you indicate

whether all variables should be declared or only those whose names begin with a

| ower c as eefiXused for lotahvarialges in the Hungarian naming convention. Since

| use a different naming convention (prefixin
prefer the *“All wvariabl es, merged” option.

Most of the other choices should be setdxplanatory, or easily understood with a little

testing. Thelast checkbox, Create LOCALSs as part of BeautifyX, determines whether local

decl arations are added when using the Beautif
native Beautify.

E Thor Configuration E@

Menu Definitions || Tool Definitions || Hot Key Assignments | Options |
Tool | Create Locals
Thor A)
Beautifyx Selec‘tu.m of variables
Break Highlighted Text All variables, merged El

Comment Highlighted Text
Create Locals

Highlight Mext Parentheses Remove orphan LOCALs
MDots All variables use 'AS datatype’ phrase ||
Modify Class for PRG Classes
Move/Resize Code Window
ReDefine Parent Class Line Width 100
Resize Designer Window
Source Control

Toggle Comment Colors

Move/merge LOCALs statements to top D

Multiple variables per line

In PRGs, create LOCALs for all Procedures [|

Create LOCALs as part of BeautifyX |:|

d: Vo wip\thor} Thor - 1.22.16 - June 5, 2012

Figure 25. This page lets you determine how the Create Locals tool behaves.

Create Locals

Selection of variables
All variables, merged EI

Lowercase 'L’ variables onhy
Lowercase 'L’ variables only; commented list of others
All variables, lowercase "L variables separately

All variables, merged

Figure 26. Create Locals can apply to only a subset of variables, based on their names.

Il f, even after trying ¢ewalythelara declsatidngarengs, Yy ou
created, Thor offers you the ultimate flexibility. You can create your own version of the

code for the tool. To do so, chooddore | Manage Plugins from the Thor menu. In the form

that appears, find CreateLocalsStatemesitand click the Create button next to it. That opens

a program containing the current code use to actually create the local declarations. You can

modify itandsaveit(i t ° s aut omat i c a brdfromithenon,lthetoalwilg ht pl a:
use your modified version.

Add MDots to variable names
Menu: Code MDots |Add MDots to variable names

As with declaring all wvariables | ocal, I " ve Kk
Sshould be preceded by “m.” (often amhei tten as
variable rather than at a field of the same name. In fact, increasingly, | remember to put

them in my code, but I still forget sometimes. This Thor tool catches all the places | missed.

Figure 27 shows a block ofcodéa hat doesn’ t us d&igurel2&shoMtloet not at i
same code after using this tool. A couple of thehanges have been circled.

25 killapp.prg [E=8 Fol ™=

-

LOCRAL InDesktopHWnd, 1nHWnd, 1nCldHWnd, lcClass, lnLen, nClosedCount

1nDesktopHWnd = GetDesktopWindow ()
InHWnd = GetWindow(lnDesktopHWnd, GW CHILD)
InClosedCount = 0

DO WHILE lnHWnd <> 0
lcClass = SPACE(2386)
Inlen = GetClassName (1lnHWnd, @lcClass, 256)
1n0ldHWnd = lnHWnd
InHWnd = GetWindow (1nOldHWnd, GW_HWNDNEXT)
IF UPPER(LEFT (lcclass, InLen)) = UPPER(tcClassName)
InVisible = IsWindowVisible (1nOldHWnd)
IF 1lnvisible = 0
PostMessage (1lnOldHWnd, WM CLOSE, 0, 0)
InClosedCount = InClosedCount + 1
ENDIF
ENDIF
ENDDO

m

RETURN InClosedCount

4 LI »

Figure27. Thi s code doesn’t use the MDOT notation to ensur

A killapp.prg * [E=8Eol 5

LOCAL lnDesktopHWnd, lnHWnd, 1nOldHWnd, lcClass, lnlen, nClosedCount

m. 1lnDesktopHWnd GetDesktopWindow ()
aHlind = GetWindow (m.lnDesktopHWnd, GW_CHILD)

m.1InClosedCount = 0

DO WHILE m.lnHWnd <> 0
m.lcClass = SPRCE(2586)

m.InLen = GetCla Name-tm. InHWnd, @m.lcclass, 256
m.1n0ldHWnd m. InHWnd
m.1nHWnd = Getdindow (m.2AC1dHWnd, GW HWNDNEXT)
IF UPPER(LEFT (m.lcClass, m.lnLen)) = UPPER (m.tcClassName)
m.1lnVisible = IsWindowVisible (m.1ln0OldHWnd)
IF m.lnVisible = 0
PostMessage (m.1n0OldHWnd, WM_CLOSE, 0, 0)
m.InClosedCount = m.InClosedCount + 1
ENDIF
ENDIF

ENDDO

m

RETURN 1lnClosedCount

4 " »

Figure 28. After using the Add MDoto variable names tool, the code fronfrigure27 h a s m. before al
references to variables.
By default, this tool adds MDotyssuéhadorthe pl aces

left-hand side of assignment statement. However, you can control this behavior using the
Options tab of the Thor Configuration form, shown ifrigure 29. Figure 30 shows the same
block of code when using the tool as configured iRigure 29.

ﬁ Thor Configuration

Menu Definitions || Tool Definitions || Hot Key Assignments | Options |

Tool

Thor

BeautifyX

Break Highlighted Text
Comment Highlighted Text
Create Locals

Highlight Mext Parentheses

Modify Class for PRG Classes
Move/Resize Code Window
ReDefine Parent Class
Resize Designer Window
Source Control

Toggle Comment Colors

MDots

() Not used
@) m. {lowercase)

(TI M. {uppercase)

Use MDots only where required
[[] create MDots as part of BeautifyX

d: Vo' wips\thory,

Thor - 1.22.16 - June 5, 2012

Figure 29. Thor offers options for various tools. Here, you can determine whether the Add MDots tool uses

lower-case or upperc a s e

and

whet her

required to avoid conflict with field names.

t

put s

MDot s

in front

of

al

LOCAL 1InDesktopHWnd, InHWnd, 1nOldHWnd, lcClass, lnLen, nClosedCount

InDesktopHWnd GetDesktopWindow ()
1A indow(m.lnDesktopHWnd, GW CHILD)

InClosedCount = 0

DO WHILE m.1lnHWnd <> 0
lcClass = SPRACE(256)
Inlen = GetClassName (m.1lnHWnd, @m.lcClass, 256)
In0ldHWnd = m.1nHWnd
InHWnd = GetWindow (m.1ln0OldHWnd, GW_HWNDNEXT)
IF UPPER(LEFT (m.lcClass, m.lnlen)) = UPPER (m.tcClassName)
InVisible = IsWindowWVisible (m.1ln0OldHWnd)
IF m.InVisible = 0
PostMessage (m.InOldHWnd, WM CLOSE, 0, 0)
InClosedCount = m.1lnClosedCount + 1
ENDIF
ENDIF
ENDDO

RETUEN m.lnClosedCount

Figure 30. After changing the option to include MDots only where required, variables on the Idftand side of

an assignment statement no longer get the MDot prefix.

Highlight Parentheses
Menu: Code | Highlighting text | Highlight parentheses

This is another tool that’'s especially

the cursor position to find a matching pair of parentheses and highlights the matching
parentheses and all the code in betweelkigure 31 shows a ine of code with nested
parentheses; the cursor is inside the inner blocksigure 32 shows the same block after
using the tool.

cTmpField = field(m.i)
gtotal = m.gtotal + IIF(ISBLANK(&CT@@FieldJ,0,1)

Figure 31. The cursor here is inside parentheses.

cTmpField = field(m.i)
gtotal = m.gtotal + IIF(ISBLANE[EfsiNiis)ai=NEs}

£0,1)

Figure 32. Highlight parentheses finds the first containing pair of parentheses and highlights the contained

code.

Like Highlight Control Structure, using this tool repeatedly moves outwardtigure 33

shows the same block of code after using the tool twice. Oddly, if there are no more pairs of
parenthesescontaining the highlighted code the tool highlights all the code in the editing

window.

handy
el se or old code | haven’t seen in a whi
a syntax error and can’t see whbkalothsaysMrom ng.

I
Wh

cTmpField = field(m.i)
gtotal = m.gtotal + IIF{EESIEIMANETeikile)RE-NE«)RNIINNE]

Figure 33. Each subsequent use of Highlight parentheses moves out by one pair of parentheses.

Highlight parentheses is smart enough to get things right when the matching pair of
parenthesescontains other parentheses. For example, iRigure 34, the cursor is positioned
on the FIELL) function, but not inside its parenthesesFigure 35 shows the result of using
the tool. The correct pairing is found.

IF THIS.shownulls
gtotal = m.gtotal + IIF(ISNULL(EVAL(FﬂELD(m.iJJ),G,l)
ELSE

Figure 34. Here, the cursor’s initial pleses.t i on isn’t in the

IF THIS.shownulls
gtotal = m.gtotal + IIF(ISNULL (EVALIgSAREWREEY) , 0, 1)
ELSE

Figure35. The Hi ghlight parentheses tool gets it right, ev
innermost parentheses.

Document Treeview
Menu: Applications | Document Treeview

When Document View was addechi VFP 7, it gave us an easy way to navigate inside files
containing multiple routines. It was a major improvement over the Procedures and
Functions List it replaced. | use it all the time when working with classes created code
(PRG).

But Document View las never been all that helpful for forms or for classes stored in a class
l' ibrary (VCX). While it |ists every method th
structure, and in a busy form or class, it can be quite cluttered.

The Document Treeviewto ol i s better suited for visual cl
for code). Document Treeview is based on the main combobox of PEM Editor, but you can

use it as a stanehlone tool. It shows the objects in a form or class and those of their

methods thatcontain code. As the name indicates, it uses a treeview control to organize the
information, so you can expand or collapse any sectioli.can be resized as well as docked.

In addition, you can control what appears at any time.

Figure 36 shows Document Treeview for thdMover form from the Solution Samples
(found in folder Samples Solution\ Controls\ Lists\); some objects and methods are otdf-
sight above and below the sction shown.

.+ Document TreeView - Imover.scx (=
+| Methods +| all objects
----- F Activate I
----- £ Deactivate N
----- F Init

----- 2 Behindscenesl [solution:Behindscenes]
----- '@ C_solutions1 [solution:C_solutions]
----- 0 Cmdclose2 - ('Close") [solution:Cmdclose]
----- A Labels - ('Select one or more i ... "} [Label]
----- A Label6 - (' Instructions ') [Label]
|:—:|I§I Moverlists1 [samples:Moverlists]
-3 cmdAdd - (*>") [Commandbutton]
-3 cmdAddAll - ('>>') [Commandbutton]
----- 3 cmdRemove - (<"} [Commandbutton]
----- D cmdRemoveall - ("<<") [Commandbutton]
B IstSelected [Listbox]
[IstSource [Listbox]
-----) Shape2 [Shape] i
== emdPrint - ("\<Print to Screen') [Commandbutton]

m

Figure 36. Document Treeview shows you the objects in a classform and any methods that contain code.

The colors in Document Treeviewhelp to quickly understand the display. Names of objects

are shown in black. If the object was inherited along with its container from a parent class

(like the buttons inside Moverlistsl in the example), its backcolor is gray. Method names
areshowninbue i f they contain code at this | evel;
shown in gray. All method names are bold, which offers another way to distinguish them

from object names.

Clicking on an object makes it the current object in PEM Editor, Hat tool is open. Often, it
also selects that object in the Form or Class Desigreend makes it the current object in the
Property Sheet t here are cases where it’s not possib

You can click on any method to openitfe di t i ng; that’'s just | i ke D
Document Treeview offers another possibility. Use Ctrl+Click on the method and a window

opens showing you all code for that method at all levels of the inheritance hierarchy. Of
course, you cahertreedbuttheéeé sodemuch easier wa
anything offered natively.(Another Thor Tool, Code Listings, also lets you see all the code

in one place.)

Figure 37 shows the window that opens when you Ctrl+Click on the DisplayProperties
method of the main form for my Object Inspector toolThe code added at the form level is
shown first, followed by the code inherited from the sfExplorerFormTreeview class,
followed by the code for this method in sfExplorerForm, the level at which the method was
defined.

== -frmcollectioninspector.displayproperties.prg E\@

Procedure DisplayProperties -
lparameters tnPage

DODEFAULT (m. tnPage)

Modified 7-December-2010 by TEG

In some cases, the grid shows as empty after the above.

But taking focus off the form and putting it back cures it.
So this code forces focus off the inspector form and then
restores it.

LOCAL oTempForm as Form

A .

oTempForm = NEWOBJECT ("frmGrabFocus"™, "Inspector™)
oTempForm.Left = -1000

oTempForm.Width = 5

oTempForm. Show ()

oTempForm.Release ()

m

RETURN

EndProc

* Class sfexplorerformtreeview of '..\VFPX PROJECTS\OBJECT INSPECTOR\SFEXPLORER.VCX'

Procedure sfexplorerformtreeview.DisplayProperties
* Display information about the selected item by selecting the specified page
* in the properties pageframe and refreshing it.

lparameters tnPage
with This
if between(tnPage, 1, .pgfProperties.PageCount)
.pofProperties.ActivePage = tnPage
.pgfProperties.Pages (tnPage) .Refresh()
endif between (tnPage, 1, .pgfProperties.PageCount)
endwith

EndProc

s
* Class sfexplorerform of '..\VFPX PRCJECTS\CBJECT INSPECTCR\SFEXPLORER.VCX' -
« [r

Figure 37. Using Ctrl+Click on a method in Method Treevieshows you all code for that method, from all
levels of the inheritance hierarchy.

There are a number of ways t@ontrol what appears in Document Treeview. The two

checkboxes above the treeview contrabffer three variations. When both are checked, you

seeall objects, as well as those methods that have code, ag-igure 36. If you uncheck All

objects, you see only those objects that have any code, as well as the méghthat contain

code.Figure 38 shows Document Treeview for the Imover form with All olpects unchecked.

As you can sedghisoptonma kes 1t easy t o dieadly, ilwbuaimckeeckt her e’ s
Methods, the All objects checkbois hidden, and you see athe objects in the form or class.

Figure 39 shows Document Treeview for the Imover form with Methods unchecked.

.:f + Document TreeView - Imover.scx

Methods [All objects

= g

- # Activate

= - # Init
E!---Cl cmdPrint -

("<Print to Screen") [Commandbutton]

Figure 38. You can set Document Treeview to show only objects that contain code.

.:f + Document TreeView - Imover.scx

16 controls

= g

frmmover [Form]
----- 2 Behindscenesl [solution:Behindscenes]
----- %#' C_solutions1 [solution: C_solutions]
----- O Cmdclose - ('Close") [solution:Cmdclose]
----- A Label5 - ('Select one or more i ... ") [Label]
----- A Labelﬁ (' Instructions][Label]
=S IEI
O cmdAdd - ("=") [Cummandbutton]
O cmdAddall - ("=>")} [Commandbutton]
-2 cmdRemove - ('<") [Commandbutton]
----- 3 cmdRemoveall - ('<<") [Commandbutton]
o IstSelected [Listbox]
- IstSource [Listbox]
----- @) Shape2 [Shape]
----- = cmdPrint - ("<Print to Screen') [Commandbutton]
----- A labell - ('Source List") [Label]
----- A label2 - ('Selected List') [Label]

Figure 39. Unchecking the Methods checkbox telBocument Treeview to show all objects and no methods.

You can al so control t he

d i. Hgpre 40 ghows the bagic t h e

menu, as it appears Wen you right-click on the background of the toal(Right-clicking on a
node, of course, includes options specific to the node.) The first three items below the
divider in Figure 40 determine what information is included for an object. The first item,
Show Caption, ControlSource indicates whether you want to include the Caption or
ControlSource of an object in the display, to help you determine which object it is. Figure

39, you can see, for example, that the Captionfileb ut t o n

cmdCl ose?2 i s

expect, the Show class name and Show class library and name options are mutually
exclusive; checking one unchecks the other. However, you can choose to uncheck both and

show no information about the class of an object

t

0]

Cl

Ll Always expand all nodes

Method Sort Order L4
Object Sort Order L4
EFont...

¥ Show Caption, ControlSource

Show class name
¥ Show class library and name

Show all custom methods

Show methods w/inherited code; this form
¥ Show methods w/inherited code; all objects

Figure40. Document Treeview' s context menu includes a

The last hree items in that section of the context menu determine which methods are
displayed. By default, Document Treeviewhows only methodsthat have codeat this level
of the hierarchy. Check Show all custom methods tsoinclude all methods added to the
current object. Check Show methods w/inherited codgthis form to also show methodsof
the current objectthat have cale higher in the inheritance hierarchy Check Show methods
w/inherited code; all objects to include methods of contained objectthat have code
somewhere in the inheritance hierarchy as well.

The items above the divider control the appearance, but not theontent of Document
Treeview. The first item, Always expand all nodes, determines whether all items in the
treeview are expanded when you open the tool or when you open a form or class with the
tool open. The next two items determine the order in which maods and objects,

respectively, appear in the list. For methods, the only choices are a casmnsitive

alphabetical sort or a casansensitive alphabetical sort. Objects offer a lot more choices, in
addition to those two; the list is shown inFigure 41. You can leave them unsorted, in which
case they appear in the same order as in the Property Sheet. You can also sort by Tabindex
or from top to bottom or left to right.

¥ Unsorted
Alphabetical (case sensitive)
Alphabetical (case insensitive)
Tablndex
Top to Bottom
Left to Right

Ll MemberClasses -- ordered

Figure 41. There are a number of ways to sort objects in Document Treeview.

By default, objects within controls that have the MemberClass property sort in creation
order, the same orderin which they appearin the Property Sheet Checking the final option
in Figure 41, MemberClasses- ordered, sorts them according to the order specified, such
as PageOrder or ColumnOrder.

numb

Adding tools to Thor

I have a number of small tools |I’'ve written a
interface. For example, one of them goes through a project and fills a cursor with the names

of all the form classes used in that project (that is, those on which laast one form is

based). The whole thing is about 40 lines of code. The problem with these little tools is that

when | want to use them, | have to find them and look at the code to remember how. Then |

have to either make sure the code is in the path opscify the full path in order to run the

tool.

One of the design criteria for Thor was to make it easy for people to add tools and to share
them. That way, you can take all the little tools like the one | describe above and stick them
into the Thor Tools nmenu to keep them handy. Among other benefits, Thor manages the
code so | don’t have to worry about paths.

To add a tool to Thor, open the Thor configuration form (Thor | Configure from the menu)
and click on the Tool Definitions tab. Click the Create Tobutton to open the Create Tool
dialog, shown inFigure 42. Once you give the tool a name using the textbox preceded by

“Thor Tool ,”7 c¢click the Create button to open
&% Create Tool =N Eoh ™
Folder: | Default Folder || Current Folder |
D:Fox\WFPX\ThoriThorTools WMy Tools E
Thor_Tool_
Tool Template: | Thor Default EI

Figure42. To add a new tobto Thor, specify the name of the tool in this dialog and click Create.

Thor tools require a specific format, which is provided by the template. The default
template is shown inListing 2, slightly reformatted to fit the page. The bulk of the template
provides a place to give Thor information about this tool; to create a tool, fill in one or more
of the properties listed. Prompt is required and contains the prompt thawill appear on the
Thor Tools menu. Description appears only in the Thor configuration dialog.

Listing2. The default Thor template shows exactly what's r e

Lparameters IxParaml

*kkkkkkkkkkkkkkkk *kkkkkkkkkhhhhhikix *kkkkkkkkkkhhhhhhkhkiix

kkkkkkkkkkkkkkkhkkkkkkhkkkhkkkkkkkhhkkkhhkkkhkkkkkhhkkkhhkkkhkkkkkkkkk

* Standard prefix for all tools for Thor, allowing this tool to
* tell Thor about itself.

If Pcount() = 1 ;
And 'O’ = Vartype (IxParaml) ;
And 'thorinfo' == Lower (IxParam1.Class)

With IxParam1

* Required
.Prompt = 'Prompt for the tool' && used in menus

* Optional

Text to .Description NoShow && a description for the tool
Enter a description for the tool here

EndText

StatusBarText ="

* These are used to group and sort tools when they are displayed in menus
* or the Thor form

.Source =" && where did this tool come from? Your own initi als,
&& for instance

.Category =" && creates categorization of tools; defaults to .Source
&& if empty

.Sort =0 &&the sort order for all items from the same Category

* For public tools, such as PEM Editor, etc.
Version =" &&e.g., 'Version 7, May 18, 2011
Author ="

.Link =" && link to a page for this tool
.VideoLink =" && link to a video for this tool

Endwith

Return IxParam1
Endif

If Pcount() =0

Do ToolCode
Else

Do ToolCode With IxParam1
Endif

Return

*kkkkkkkkkkkhhhhhhhhhkkkkkx *kkkkkkkkhk *kkkkkkkkkkhhhhhhkiiix

*kkkkkkkkkkkhhhhhhhhhkkkkkx *kkkkkkkkhk *kkkkkkkkkkhhhhhhkhiix

* Normal processin g for this tool begins here.
Procedure ToolCode
Lparameters IxParaml1

EndProc

The Source, Category and Sort properties let you specify where the tool appears in the Thor

Tools menu.If Category is specified, the tool appears in thgroup; you can specify multiple

|l evel s in the menu by separating the items wi
an item to the Misc. group in the Code menu,

If Category is empty, the value in Source specifies the submenuwhich the tool appears.
You might use your initials or your company to group all of your own tools together.

The Sort property determines the position of this item in the specified submenu.

The last set of properties in the template is relevant only fatools being shared with the
VFP community.Listing 3 shows the properties set for the tool to get a list of form classes
used.

Listing 3. The Thor properties set for the Get form classes tool.

* Required
.Prompt ='Get form classes' && used in menus
* Optional
Text to .Description NoShow && a description for the tool
Fill a cursor with names of the form classes used in a project
EndText
StatusBarText ="

* These are used to group and sort tools when they are displayed in menus
* or the Thor form

.Source ='"TEG' && where did this tool come from? Your own initials,
&& for instance
.Category =" && creates categorization of tools; defaults to .Source
&& if empty
.Sort =0 && the sort order for all items from the same Category
The heart of the toolistheTo ol Code procedure; that’'s where y
the task.Listing 4 shows the code added to ToolCoder the Get Form Classes tool. As you
can see, it’s not terribly compl ex. It checks
is created to hold the list of form classes. The code then loops through the files in the
project. When aformfileiss ncount er ed, it’s ope-lewldecmds a t abl
found. I f we’ve seen this form class before,

class for our list, a record is added to the FormClasses cursor. After the loop is complete,
the cursor opens in a BROWSE window.

Listing 4. The ToolCode procedure for the Get Form Classes tool.
LOCAL cClassName, oFile, oProject, nOldSelect

IF TYPE("_VFP.ActiveProject") = "U"
MESSAGEBOX("No active project”, 0+48, "Get form classes")
RETURN

ENDIF

oProject = _VFP.ActiveProject
nOldSelect = SELECT()

IF USED("FormClasses")
USE IN SELECT("FormClasses")
ENDIF

CREATE CURSOR FormClasses (cClass C(30), nCount N(3))
INDEX on UPPER(cClass) TAG cClass

SELECT O
FOR EACH oFile IN oProject.Files
IF oFile.Type ="K"
TRY
USE (oFile.Name) ALIAS __Form
LOCATE FOR UPPER(BaseClass) = "FORM"
cClassName = __Form.Class
IF SEEK(UPPER(m.cClassName), "FormClasses", "cClass")
REPLACE nCount WITH nCount + 1 IN FormClasses
ELSE
INSERT INTO FormClasses VALUES (m.cClassName, 1)
ENDIF
USE IN DBF("__Form")
CATCH
ENDTRY

ENDIF
ENDFOR

* Make sure last form was closed.
USE IN SELECT("__ FORM")

SELECT FormClasses
BROWSE NOWAIT

Once you've specified the necessary propertie
save the program. It automatically gts saved in the right place with the right name.

To test your tool, either close the Thor configuration form, or click its Thor button. Either
one refreshes menus and hotkey©nce you do so, the new tool is included in the Thor
Tools menu, as irFigure 43.

] [=]| Applications

Code

Favorites, MRUs, etc
GoTo

Objects and PEMs
Parent Classes
Reports

Settings & Misc.
Tables

TEG

Windows
Wizards

. S . . A

Get form classes |

v v

Figure 43. Once you finish the definition of a new tool and refresh Thor, the tool is shown on the menu.

Using Thoros cewtelbsi | i ti es in n

While you can write a new tool with standard VFP code (as in the Get Form Classes tool),
Thor offers a large library of capabilities that make it easier to write tools. The Thor
Framework gives you access to several classes, as well amsstandad items you may
want.

To access the Thor Framework, choose Thor | Thor Framework from the menu. A window
opens containing code you can cut and paste into your tool codggure 44 shows part of

the Thor Framework. (Be aware that the Thor Framework is smart enough to show the
correct path for your installation. Figure 44 shows where the files are located on my
computer.)

= thorframework.prg a

KAKAKKKK KKK KA KKK RAKRKRNRKRKARARKRKNKXRKKNNK, Externagl APPS FA kKA KKk A A AR kAR AR AR AR AR AR AR AR AR KRN KRR KRN z

loInspector = ExecScript(Screen.cThorDispatcher, "Class= inspector from inspector™)

* editorwin home page = http://vipx.codeplex.com/wikipage?title=thor%20editorwindow%20object
Local loEditorWin as Editorwin of "d:\fox\vfpxz\thor\thor\tools\apps\pem editor\source\peme editorwin.wvcx"
loEditorWin = ExecScript(_Screen.cThorDispatcher, "Class= editorwin from pemeditor™)

* toopls home page = http://vIipx.codeplex.com/wikipage?title=thor%20tools%20cbject
Local loTools as Pemeditor tools of "d:\fox\vfpx\thor\thor\ools\apps\pem editor\source\peme_tools.vcx"
loTools = ExecScript(Screen.cThorDispatcher, "Class= tools from pemeditor™)

lcVersion = ExecScript (_Screen.cThorDispatcher, "Version=")

lcToolFolder ExecScript (_Screen.cThorDispatcher, "Tool Folder=")

Figure 44. The Thor Framework lets you take advantage of code in Thor in your tools.

Whil e a complete discussion of the Thor
show a small example of how you can you use [(Eee

http://vipx.codeplex.com/wi kipage?title=Thor%20To0ls%20Making%20Toolsfor more
information about the Thor Framework.) The Get Form Classes tool described in the last

Fr ame

http://vfpx.codeplex.com/wikipage?title=Thor%20Tools%20Making%20Tools

section works only when you have a project open. One of the cool features of many Thor
toolsisthattheycanseewha’ s under the mouse and operate o
handy capability for thistoo—i f t her e’ s no open project, then
mouse and attempt to open that project.

To figure out how that capability was provided, | poked around inhe code for Thor tools
that have it. To see how any Thor tool is implementedpen the Thor Configuration form

and switch to the Tool Definitonspage Sel ect the tool you’'re inte
and click the Edit Tool button, indicated inFigure 45. The form shown in Figure 46 appears.
If all you want to do is see howthe¢ ool wor ks, choose the second

ReadOnly mode. "’

-

& Thor Configuration IERENIES
M Tool Definitions | Hot Key Assignments ” Options |
- o oty ncal@En

H--F Applications []Run this tool when Thor starts w

1§ Code Program: Thor_Tool_GetFormClasses.PRG -
15 Favorites, MRUs, etc Source: TEG

Folder: My Tools

+--T Parent Classes Description: Fill a cursor with names of the form dasses usedin a

B

B

£

B

=5 Objects and PEMs
E project
B

£

HE TEG

...\l Get form classes
& Thor

[E Windows

=& Wizards

Create Tool] [Open Tool Folder

d:\fox wipx\thor, Thor - 1.22.16 - June 5, 2012

Figure 45. You can modify a tool by locating it in the Thor Configuration form and clicking Edit Tool.

sy Edit file THOR_TOOL_REPOSITORY GO.. | o | [= 23
File Name: | THOR_TOOL_REPOSITORY_GOTOFP.PRG
Folder: | TODLS
This file found in one of Thor's system folders.

If you wish to edit this file, you should not edit it directly, as the
contents of this folder are replaced with each update of Thor.

‘ Copy this file to folder "My Tools® and edit it. ‘

‘ View this file in Read-Only mode ‘

Figure 46. This form appears when you attempt to open any bu#in Thor tool. To modify the tool, choose the
first button. To simply look at its code, choose the second button.

| had to actuallylook atthe PEM Editor source codéo figure out how Thor can operate m
the item named under the mouseWhen | looked at the code fothe SuperBrowse tool, |
found the lines inListing 5.

Listing 5. The code tlat implements the SuperBrowse tool uses this code to determine what table to browse.

* tools home page = http://vfpx.codeplex.com/wikipage?title=thor%20tools%200bject
loTools = Execscript (_Screen.cThorDispatcher, 'class= tools from pemeditor’)
loTools.Use HighlightedTable (Set (‘Datasession’))

|l dug into the PEM Editor’s source to find t
in the PemEditor_Tools class of PEME_Tools.Vcx. Eventually, | found the line of code in

Listing 6. Since the method name implies that it only grabs the highlighted text, | tested to

confirm that the method, in fact, picks up the entire word where the cursor is positioned.

Listing 6. This line of code, used by the SuperBrowse tool, reads the text under the cursor.

IcAlias = This.oUtils.oIDEx.GetCurrentHighlightedText()

The next step was to change the code for my Get Form Class tbopened the tool code as
describedabove.

To set upthe ability to read the text under the cursor weneedthe Tools class from the
Thor framework. Figure 44 includesthe code to make that class availde. You can just copy
those three lines from the frameworkand paste them into the appropriate place in the
ToolCode procedureOnce the Tools class is instantiated, we can use it to get the word
under the cursor, and then try to open a project with thahame. The relevant portion of the
modified ToolCode procedure is shown irvisting 7 (slightly reformatted to fit the page).

Listing 7. Replae the code to check whether a project is open with this code to allow the Get Form Classes
tool to work on the project whose name is under the cursor.

IF TYPE("_VFP.ActiveProject") = "U"
* tools home page = http://vfpx.codeplex.com/wikipage?title=tho r%20tools%200bject
Local loTools as Pemeditor_tools ;

of "d: \fox \ vfpx \ thor \ thor \tools \ apps\ pem editor \ source \ peme_tools.vcx"
loTools = ExecScript(_Screen.cThorDispatcher, "Class= tools from pemeditor")

IcText = loTools.oUtils.olIDEx.GetCu rrentHighlightedText()
* Now find just the path and filename in the line.
IProjwasOpen = .F.

TRY
MODIFY PROJECT (IcText) NOWAIT
ISuccess = (TYPE("_VFP.ActiveProject") <> "U")
CATCH
ISuccess = .F.
ENDTRY
ELSE
ISuccess =.T.
IProjWasOpen = .T.
ENDIF

IF NOT m.ISuccess
MESSAGEBOX("No active project”, 0+48, "Get form classes")
RETURN

ENDIF

In testing, | found that this code works only when the specified projectisinth pat h. I
sure that the Thor Framework would let me read the whole project path under the cursor,
but | haven’'t yet puzzled out exactly how.

Setting up options for a tool

As discussed in théCreate Locals &'Add MDots to variable names s essdarieoin
this paper, some Thor tools let you customizéhem by setting options. The architecture for
specifying options is open, so you can add options to existing tools aclude them for your
own tools.

The first step in setting up options is to add class definition for each option to the
program that implements the tool. These are only technically class definitions; their
purpose is to provide a place to define each option. For each option, you need to specify
four properties, described inTable 1. Listing 8 shows the class definitions that set up the
options for the Add MDots tool.

Table 1. For each toobption, you need to give these properties values.

Property Purpose

Tool The name of the tool that the option affects.

Key A string that uniquely identifies the option.

Value The default value for this option.

EditClassName | The name of a class and class library that provides a user interface for specifying this
optionds val gclass>from<clagsdibrafy®s r m:

Listing 8. These threeclass definitions at the end of the code fahe Add MDots tool specify threeoptions
(shown in Figure 29).

Define Class clsMDotsProperties As Custom

Tool ='MDots'
Key = 'MDots Usage'
Value =1

EditClassName = 'clsEditMDots from Thor_Options_MDots.VCX'
Enddefine

Define Class clsMDotsWhereRequired As Custom

Tool ='MDots'
Key = 'MDots where required’
Value =.F

EditClassName = 'clsEditMDots from Thor_Options_MDots.VCX'
Enddefine

Define Class clsMDotsinBeaut ifyX As Custom

Tool = 'MDots'
Key = 'MDots in BeautifyX'
Value =.F

EditClassName = ‘clsEditMDots from Thor_Options_MDots.VCX'

Enddefine

The next step in providing options is to list the classes in the definition part of the program
that implements the tool. Fill the OptionClasses property with a commseparated list of
the classes, as ihisting 9.

Listing 9. This line in thetop (definition) portion of the Add MDots tool indicates that the tool hastiree
options, defined by the classes listed.

.OptionClasses = 'clsMDotsProperties, clsMDotsWhereRequired , clIsMDotsinBeautifyX '

Next, you need to create the Ul class to display the options. This is the class specified in the
EditClassName of each option. As the example indicates, you can (and should) use a single
class to hold the Ul for multiple options for a single tool. The clashould be based on the
Container base clasg-igure 47 shows the clsEditMDots clas used for the Add MDots tool.

= Class Designer - thor_options_mdots.vcx (clseditmdots) | o [=] 23

clseditmdots

1| »

MDots

@ Mot used
m. (lowercase)

M. (uppercase)

Use MDots only where required

Create MDots as part of Beautifyx

4 |l 2

Figure 47. This class, based on the Container class, contains controls for setting options for the Add MDots
tool.

At runtime, the specified class is added to another container class (and resized
appropriately). That container class has two methods to let you storand retrieve option
values:

1 GetOption(Key, Toolyetrieves the current value for the specified option;

1 SetOption(Key, Tool, Value) sets the value for the specified option.

Call these methods as needed to set aspgort he Op
example, the Refresh method of thérst checkbox inFigure 47 contains the code inListing
10, while the InteractiveChange met Histdgls.aves t

Listing 10. This line, n the Refresh method of the checkbox, ensures that the control reflects the current
setting for the option.

This.Value = This.Parent.Parent.GetOption(‘MDots where required’, 'MDots")
Listngll. Thi s code, i n cttihvee Chhaencgkeb orxe tsh odntsearvaes t he user’ s

This.Parent.Parent.SetOption('MDots where required’, 'MDots', This.Value)

The | ast step in providing options is to use
the ToolCode procedure or in code that proedure calls. You need to instantiate the Thor

engine and call its GetOption method (with the same parameters as shown above). The

code inListingl12r et ri eves the value of the “ MDots whert
a variable, so it can be used.

Listingl2. To apply the user’s selected option, you instant
method.
loThor = Execscript (_Screen.cThorDispatcher, 'Thor Engine=")

[IMDotsWhereRequired = loThor.GetOption (‘MDots where required’, ‘MDots")

Give Thor atry

Changing your work habits is hard, but when a
effort. In my view, Thor offers more than enough benefits to make it worth adding to your
devel opment environment. Once you figure out

can assign them hot keys or put them in popp menus to provide easy access.

Not only does Thorprovide you with a few dozen handy tools, but it lets you grab all those
little tools you’'ve written over the years an

Copyright, 2.2, Tamar E. Granor

	Getting started with Thor
	Highlight Control Structure
	Putting tools at your fingertips
	Edit Parent and Containing Classes
	Copying and pasting PEMs
	Copy (for comparing and pasting)
	Paste properties and method code

	Comparing objects
	Compare with Parent Class
	Compare with copied object

	Re-Define Parent Class
	Create Locals
	Add MDots to variable names
	Highlight Parentheses
	Document Treeview
	Adding tools to Thor
	Using Thor’s capabilities in new tools
	Setting up options for a tool

	Give Thor a try

