
Using SQL to Solve Common
Problems

Tamar E. Granor
Tomorrow's Solutions, LLC

Voice: 215-635-1958
Website: www.tomorrowssolutionsllc.com
Email: tamar@tomorrowssolutionsllc.com

Whether you're working in VFP, SQL Server, or MySQL, some problems come up pretty
regularly. In this session, we'll look at how to solve some frequent problems using SQL. In some
cases, we'll see how differences in what portion of the SQL standard is implemented make a
problem easier to solve in some variants than others.

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 2 of 50

Introduction
The SQL language is powerful. A single SQL query can often replace tens or hundreds of
lines of code. Knowing how to use SQL can make your code more readable and
maintainable. In this session, we’ll look at how to use SQL for some of the problems that
come up frequently in applications, and see how different SQL versions handle them.

For each problem, we’ll look at how to solve it in VFP’s fairly limited SQL, in SQL Server,
and in MySQL. The materials for this session include a separate folder for each, containing
the examples for that version.

To make the results easier to compare, the examples use the Chinook database, which was
created specifically to make such comparisons easier. You can download code to create
Chinook for SQL Server and MySQL at https://github.com/lerocha/chinook-database. The
materials for this session contain code to create a VFP version of Chinook as
Chinook_VisualFoxPro_AutoincrementPKs.PRG, as well as the VFP version of the database.
(Because I ran into some issues running the downloaded code to create Chinook for SQL
Server and MySQL, the materials also include the code for those.)

Chinook contains information for a fictitious online music-selling service. It tracks artists,
albums and tracks as well as customers and invoices. Figure 1 shows the database
structure; the diagram was generated by SQL Server Management Studio 2014.

The examples in this session were tested in VFP 9 SP2, SQL Server 2014 and 2017, and
MySQL 5.7 and (where appropriate) 8.0.

https://github.com/lerocha/chinook-database

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 3 of 50

Figure 1. The Chinook database has data on artists, albums, tracks and playlists, as well as about customers
and sales.

Album
AlbumId

Title

ArtistId

Artist
ArtistId

Name

Customer
CustomerId

FirstName

LastName

Company

Address

City

State

Country

PostalCode

Phone

Fax

Email

SupportRepId

Genre
GenreId

Name

Invoice
InvoiceId

CustomerId

InvoiceDate

BillingAddress

BillingCity

BillingState

BillingCountry

BillingPostalCode

Total

Employee
EmployeeId

LastName

FirstName

Title

ReportsTo

BirthDate

HireDate

Address

City

State

Country

PostalCode

Phone

Fax

Email

InvoiceLine
InvoiceLineId

InvoiceId

TrackId

UnitPrice

Quantity

MediaType
MediaTypeId

Name

Playlist
PlaylistId

Name

PlaylistTrack
PlaylistId

TrackId

Track
TrackId

Name

AlbumId

MediaTypeId

GenreId

Composer

Milliseconds

Bytes

UnitPrice

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 4 of 50

Introducing CTEs
A number of the solutions in this paper use CTEs, Common Table Expressions. CTEs have
been available since SQL Server 2005. MySQL introduced them in the most recent version,
8.0.

A CTE is a query executed before the main query, in order to collect some data to be used in
the main query. It’s very similar to a derived table (that is, a query in the FROM clause), but
easier to read and more useful. A CTE is easier to read because it’s isolated from the main
query rather than embedded in it. It’s more useful because you can refer to the same CTE
multiple times in the main query.

Listing 1 shows the syntax of a query with a CTE. The key elements are the WITH clause
that names the CTE, the AS clause that contains the CTE query, and the main query that
presumably uses the CTE.

Listing 1. A CTE is analogous to a derived table, but more useful.

WITH CTEName [(list of field names)]
AS
(SELECT <rest of query>)

SELECT <field list>
 FROM <tables, presumably including CTEName, and join conditions>
 <rest of query>

Listing 2 shows a fairly simple use of a CTE; it’s included in the MySQL and SQL Server
folders of the materials for this session as SalesByTrackCTE.SQL. The CTE groups data and
the main query joins the grouped data to an underlying look-up table to provide
descriptions.

Listing 2. Here the CTE computes annual sales totals for each track, and the main query adds the track name.

WITH csrSalesByTrack (TrackID, nYear, TotalSales)
AS
(SELECT TrackID, YEAR(InvoiceDate), SUM(UnitPrice * Quantity)
 FROM Invoice
 JOIN InvoiceLine
 ON Invoice.InvoiceId = InvoiceLine.InvoiceId
 GROUP BY TrackID, YEAR(InvoiceDate))

SELECT SBT.TrackID, Name, nYear, TotalSales
 FROM csrSalesByTrack SBT
 JOIN Track
 ON SBT.TrackID = Track.TrackId
 ORDER BY nYear, Name;

You can have multiple CTEs in a single query. Separate them with a comma following the
terminating parenthesis for the preceding CTE definition. Any CTE can list any preceding
CTE in its own FROM clause.

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 5 of 50

Both SQL Server and MySQL 8 support recursive CTEs; MySQL requires the keyword
RECURSIVE following WITH. A recursive CTE joins two queries with UNION. The first query
is an anchor; it provides one or more records to start with. The second query in the UNION
references the CTE itself to build the complete result. Recursive CTEs are used in several of
the solutions here; see the section “Filling in missing values,” later in this document for the
first such example and a little more explanation.

Both SQL Server and MySQL limit the number of levels of recursion. Each provides a way to
override the default limit. In SQL Server, you set the limit by adding OPTION
(MAXRECURSION n) to the query, where n is the maximum number of levels you want to
allow. Set n to 0 for unlimited recursion.

In MySQL, you can’t specify this at the query level. It’s a global or session setting. The
default is 1000; to change it for the current session, set the variable
@@cte_max_recursion_depth, as in Listing 3.

Listing 3. To increase the depth allowed in recursive CTEs for the current session, set
@@cte_max_recursion_depth.

SET @@cte_max_recursion_depth = 10000;

Introducing OVER
A number of the SQL Server and MySQL solutions in this paper use what are officially called
window functions, but are widely known as the OVER clause. Window functions were
introduced in SQL Server 2005, and enhanced in SQL Server 2012. They were added in
MySQL 8.

The basic idea with window functions is that you can define a set of records and apply a
function to only that set of records in order to specify a field in a query. The OVER clause
works with about two dozen functions, including the familiar aggregate functions.

There are several ways to specify the set of records and those ways can be combined. The
two ways you’re most likely to use are with ORDER BY and PARTITION BY clauses. The
basic structure for most of the window functions is shown in Listing 4.

Listing 4. Most of the window functions use this syntax.

<window function> OVER (
 [PARTITION BY <list of expressions>]
 [ORDER BY <list of <expression> ASC | DESC>>]
 [ROWS | RANGE <window frame>])

The PARTITION BY clause lets you divide the data into groups, much like GROUP BY.
However, GROUP BY consolidates all the records with matching values into a single result
record. PARTITION BY simply indicates the groups of records to which the specified
function should be applied. The original records still appear in the result set.

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 6 of 50

The ORDER BY clause indicates the order in which records are processed by the specified
function.

See the next section, “Numbering and ranking records,” for a fairly simple use of window
functions.

Window frame specification using RANGE and ROWS lets you apply a function to a subset
of a partition; it was added to SQL Server 2012 and is available in MySQL 8. RANGE lets you
limit the calculation to a group of rows based on their values for the ordering expression,
while ROWS lets you limit the calculation to a set number of rows around the current row.

None of the solutions in this paper use the ROWS specification, but RANGE appears in one
problem. RANGE lets you specify how far backward and/or forward in the current group to
apply the function, based on the order of the records. It accepts only a few keywords and
can combine any two with BETWEEN/AND. The list is:

 UNBOUNDED PRECEDING—go back to the first record of this group;

 CURRENT ROW—the record we’re not processing;

 UNBOUNDED FOLLOWING—go all the way to the last record of this group.

So you can write something like RANGE BETWEEN CURRENT ROW AND UNBOUNDED
FOLLOWING, to apply a function to every record from the current record to the end of the
partition.

See “Matching values when aggregating,” later in this paper for an example that requires a
RANGE expression.

I’ve written at length about the OVER clause; my paper that covers the SQL SERVER 2014
version in depth is available at
http://tomorrowssolutionsllc.com/ConferenceSessions/Going%20OVER%20and%20abov
e%20with%20SQL.pdf.

Numbering and ranking records
Although SQL is set-oriented, it’s not at all unusual to want to number the records in a
result, in much the same way the VFP RECNO() function does. Most commonly, you have a
sorted result set and you want to include the ranking of the item in the record itself.

Numbering and ranking across the whole result

The simplest case is ranking all records in the result in a single list. That is, get the result,
put it in the right order and then number from 1 to however many records there are.

In VFP, you can use RECNO() for this purpose, but there’s a twist. When a query executes,
VFP opens each table, whether or not it’s already open. If the table is not open, it uses its
normal alias and VFP leaves it open after executing the query. However, if the table is

http://tomorrowssolutionsllc.com/ConferenceSessions/Going%20OVER%20and%20above%20with%20SQL.pdf
http://tomorrowssolutionsllc.com/ConferenceSessions/Going%20OVER%20and%20above%20with%20SQL.pdf

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 7 of 50

already open, VFP opens it again with a different alias and closes it afterwards. So, you can’t
be sure what alias the query uses to address a particular table.

This means that you can’t pass the optional alias parameter to RECNO(), which in turn
means you can’t use RECNO() in a multi-table query. (In fact, in a multi-table query, it's
risky to pass the optional alias parameter to any VFP function that accepts it.) The solution
is to use a derived table (a query in the FROM clause) to get the results you want and put
them in order, and use RECNO() against the derived table. Listing 5 (RankGenreSold.PRG
in the materials for this session) demonstrates, with a query that ranks the genres by the
number of tracks sold. Figure 2 shows the results.

Listing 5. In this query, the derived table calculates the number of tracks sold in each genre. Then, the main
query assigns the ranks.

SELECT RECNO() AS nRank, * ;
 FROM (SELECT Genre.Name, ;
 SUM(Quantity) AS NumSold ;
 FROM Genre ;
 JOIN Track ;
 ON Genre.GenreID = Track.GenreID ;
 JOIN InvoiceLine ;
 ON Track.TrackID = InvoiceLine.TrackID ;
 GROUP BY Genre.Name ;
 ORDER BY NumSold DESC, 1) GTS;
 ORDER BY nRank ;
 INTO CURSOR csrGenreTracksSold

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 8 of 50

Figure 2. You can rank results in VFP by using a derived table to do the calculations.

In SQL Server and MySQL 8, the OVER clause provides a more direct way to get the result.
To solve this problem, we use the RANK() function, which as its name suggests, ranks
results, and the ORDER BY clause. Listing 6 (RankGenreSold.sql in the SQLServer and
MySQL folders of the materials for this session) shows the query. Like the VFP version, it
uses SUM() to calculate the tracks sold for each genre, but rather than putting that
calculation in a derived table, it’s in the main query. The first field in the query uses OVER
to compute the rank. You can read the expression as saying “put the records in descending
order by the computed quantity, and assign them ranks, starting with 1.”

Listing 6. In SQL Server and MySQL 8, you can use the RANK() function with the OVER clause to number
result records.

SELECT RANK() OVER (ORDER BY SUM(Quantity) DESC) AS nRank,
 Genre.Name,
 SUM(Quantity) AS NumSold
 FROM Genre
 JOIN Track
 ON Genre.GenreID = Track.GenreID
 JOIN InvoiceLine
 ON Track.TrackID = InvoiceLine.TrackID

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 9 of 50

 GROUP BY Genre.Name
 ORDER BY nRank

There is one significant difference between the SQL Server/MySQL results and the VFP
results. In Figure 3, note that rows 8 and 9 both have nRank = 8. The RANK() function
assigns ties the same rank. What determines a tie? The value of the expression in the
ORDER BY clause. Here, it’s SUM(Quantity). Since 41 tracks have been sold in both the
R&B/Soul and Classical genres, they get the same rank. In keeping with normal practice,
the next record has rank 10.

SQL Server and MySQL can handle this differently. The ROW_NUMBER() function assigns
numbers sequentially without regard to ties, and the DENSE_RANK() function handles ties
the way RANK() does, but continues with the next number rather than skipping ahead.

Figure 3. The RANK() function used with the OVER clause assigns the same value to ties, so for example, both
R&B/Soul and Classical have rank 8 here.

While this query works in MySQL 8, that’s the first version of MySQL where you can do this.
For earlier versions of MySQL, you can use a trick based on the ability to assign values to
variables in a query. You create a variable set to 0 in the FROM clause, and then increment
it in the field list. To do so, the data needs to be in the desired order, so the query to
compute the sales becomes a derived table. Listing 7 (RankGenreSoldPre8.sql in the
MySQL folder of the materials for this session) shows the complete query. The first query in

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 10 of 50

the FROM clause computes the number of tracks sold for each genre and sorts the genres
into descending order based on that calculation. The second query in the FROM clause
creates the variable @nRank and initializes it to 0. Since that query produces only a single
result, the implied join between the two tables has one record per genre. In the main query,
the assignment @nRank := @nRank + 1 computes a new value for nRank for each record in
the result.

Listing 7. In MySQL versions earlier than 8, you can use rank records by incrementing a variable created in
the query.

SELECT @nRank := @nRank + 1 AS nRank,
 SalesDesc.*
 FROM (SELECT Genre.Name,
 SUM(Quantity) AS NumSold
 FROM Genre
 JOIN Track
 ON Genre.GenreID = Track.GenreID
 JOIN InvoiceLine
 ON Track.TrackID = InvoiceLine.TrackID
 GROUP BY Genre.Name
 ORDER BY NumSold Desc) SalesDesc,
 (SELECT @nRank := 0) Rank
 ORDER BY nRank;

As with the VFP query, genres with the same number of sales are assigned different ranks.
If you care about the order in which tied genres are ranked, add to the ORDER BY clause of
the subquery. For example, if you want tied genres to be assigned ranks in alphabetical
order, add Name to the ORDER BY clause of the first subquery. (The VFP solution already
does this.)

Numbering and ranking within groups

The problem gets harder when you want to number groups in the result separately. Here,
we’ll look at the length of tracks in each genre, ranking them from longest to shortest.

In VFP, you can’t do this in a single query. The easiest way to do it is with a mix of SQL and
Xbase code. First, collect the track lengths by genre. Then, loop through the genres and use
the previous technique to rank the genres separately.

Listing 8 (RankByTrackLength.prg in the VFP folder of the materials for this session)
demonstrates. First, we create a cursor to hold the final result. Then, we run a query that
extracts track length and genre information. A follow-up query puts a list of genres into a
cursor. Then we loop through that cursor of genres and, for each, use the technique from
the previous example to attach a rank to each record for that genre. The query is included
in an INSERT command that adds it to the overall result. (We could, of course, run the
query that adds the ranks and put that result into another cursor and then append that
cursor to the final result cursor. But INSERT INTO … SELECT lets us do it in one step rather
than two.) Figure 4 shows partial results.

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 11 of 50

Listing 8. In VFP, you can’t rank records within groups in a single query. Instead, you need a query to collect
the raw data and then a loop to handle each group.

CREATE CURSOR csrGenreRankByTrackLength ;
 (nRank I, GenreName C(120), TrackName C(200), TrackLength I)

SELECT Track.Name AS TrackName, ;
 Milliseconds AS TrackLength, ;
 Genre.Name AS GenreName ;
 FROM Track ;
 JOIN Genre ;
 ON Track.GenreId = Genre.GenreId ;
 ORDER BY GenreName, TrackLength DESC ;
 INTO CURSOR csrGenreLengthOrder

SELECT DISTINCT GenreName ;
 FROM csrGenreLengthOrder ;
 ORDER BY GenreName ;
 INTO CURSOR csrGenres

LOCAL cGenreName

SCAN
 cGenreName = csrGenres.GenreName
 INSERT INTO csrGenreRankByTrackLength ;
 SELECT RECNO() AS nRank, * ;
 FROM (SELECT GenreName, TrackName, TrackLength ;
 FROM csrGenreLengthOrder ;
 WHERE GenreName == m.cGenreName ;
 ORDER BY TrackLength DESC) csrOneGenre
ENDSCAN

In this example, you could actually omit the first query and extract the data directly from
the original tables in the innermost query inside the loop. When you need to calculate or
aggregate data along the way, running a separate query first is likely to be more readable.

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 12 of 50

Figure 4. With a little creativity, you can rank records within groups in VFP.

The problem is simpler in SQL Server and MySQL 8 because OVER’s PARTITION BY clause
lets you do it in a single step. In Listing 9 (RankByTrackLength.sql in the SQL Server and
MySQL folders of the materials for this session, respectively), the expression for nRank says
to divide the records into groups based on GenreID and apply the RANK() function
separately within each group, in descending order based on Milliseconds. Figure 5 shows
partial results; as in the previous example, ties are acknowledged by assigning the same
rank.

Listing 9. OVER’s PARTITION BY clause lets you apply functions like RANK() to groups within a query’s
results, not just to the results as a whole.

SELECT RANK() OVER (PARTITION BY Track.GenreID ORDER BY Milliseconds DESC) AS nRank,
 Track.Name AS TrackName,
 Milliseconds AS TrackLength,
 Genre.Name AS GenreName
 FROM Track
 JOIN Genre
 ON Track.GenreId = Genre.GenreId
 ORDER BY GenreName, nRank;

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 13 of 50

Figure 5. Ranking within groups is easy in SQL Server and MySQL 8 because of the PARTITION BY clause of
OVER.

In earlier versions of MySQL, you can again use variables to accomplish the task. In this
case, you need both the @nRank variable of the previous example and another to track the
genre. Listing 10 demonstrates; it’s included as RankByTrackLengthPre8.sql in the MySQL
folder of the materials for this session. The first subquery collects and orders the genre and
track length information. The second subquery initializes the variables @nRank and
@GenreName. In the main query, the assignment to @nRank is a CASE statement. The first
case handles records from the same genre as the previous record. The second case handles
changes in genre, saving the new genre to the @GenreName variable as well as setting
nRank to 1. The whole thing depends on @GenreName getting set after being compared to
the GenreName field in the current record. (There’s a well-known technique using
variables in the VFP Report Designer that’s quite similar, in fact.)

Listing 10. Variable assignment in the query can be extended to allow ranking records within groups in
versions of MySQL before 8.

SELECT @nRank := CASE WHEN @GenreName = GenreName THEN @nRank + 1
 WHEN (@GenreName := GenreName) IS NOT NULL THEN 1 END AS nRank,
 GenreTrackLength.*
 FROM (SELECT Genre.Name AS GenreName,
 Track.Name AS TrackName,
 Milliseconds AS TrackLength
 FROM Track
 JOIN Genre
 ON Track.GenreId = Genre.GenreId
 ORDER BY GenreName, TrackLength DESC) GenreTrackLength,
 (SELECT @nRank := 0,
 @GenreName := '') Vars
 ORDER BY GenreName, nRank;

Top N in each group
Once you know how to rank records in groups, you’re almost all the way to finding the top
N records in a group. Finding the top N in a group is a common problem, used for
everything from identifying the top students in each class to determining the bestselling
products for each department in a store to finding the least productive employees in each

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 14 of 50

department of a company. To demonstrate, we’ll find the five longest tracks in each genre
in the Chinook data.

You might think the TOP n clause, which allows you to include in the result only the first n
records that match a query’s filter conditions, would let you solve these problems. But TOP
n by itself doesn’t work when what you really want is the TOP n for each group in the
query.

In VFP, like ranking within a group, finding the top N in each group requires a hybrid
solution using both SQL and xBase. Again, we collect the data and get a list of genres, then
loop through them. This time, we use TOP n to keep only the top five records within each
group, as shown in Listing 11 (TopNTrackLengthByGenre.prg in the VFP folder of the
materials for this session). Results are shown in Figure 6.

Listing 11. To find the top N for each group in a dataset, you use code very similar to that used for ranking
within groups, but apply TOP n to keep only the records you want.

CREATE CURSOR csrGenreRankByTrackLength ;
 (nRank I, GenreName C(120), TrackName C(200), TrackLength I)

SELECT Track.Name AS TrackName, ;
 Milliseconds AS TrackLength, ;
 Genre.Name AS GenreName ;
 FROM Track ;
 JOIN Genre ;
 ON Track.GenreId = Genre.GenreId ;
 ORDER BY GenreName, TrackLength DESC ;
 INTO CURSOR csrGenreLengthOrder

SELECT DISTINCT GenreName ;
 FROM csrGenreLengthOrder ;
 ORDER BY GenreName ;
 INTO CURSOR csrGenres

LOCAL cGenreName

SCAN
 cGenreName = csrGenres.GenreName
 INSERT INTO csrGenreRankByTrackLength ;
 SELECT RECNO() AS nRank, * ;
 FROM (SELECT TOP 5 GenreName, TrackName, TrackLength ;
 FROM csrGenreLengthOrder ;
 WHERE GenreName == m.cGenreName ;
 ORDER BY TrackLength DESC) csrOneGenre
ENDSCAN

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 15 of 50

Figure 6. A combination of SQL and Xbase lets you find the top N for each group in a result set.

Once again, the problem is easier in SQL Server and MySQL 8. We can simply use the
previous code as a CTE and filter on the newly-computed rank field. Listing 12
(TopNTrackLengthByGenre.sql in the appropriate folder of the materials for this session)
shows the same code as before (except for the ORDER BY clause), but it’s now in a CTE. The
main query has a WHERE clause to filter on nRank and the ORDER BY clause has been
promoted by one level. The results are identical to those obtained in VFP, except for the
handling of any ties.

Listing 12. In SQL Server and MySQL 8, we can simply use the code to rank within groups as a CTE and filter
based on the computed rank of each record.

WITH RankByTrackLength (nRank, TrackName, TrackLength, GenreName)
AS
(SELECT RANK() OVER (PARTITION BY Track.GenreID ORDER BY Milliseconds DESC) AS nRank,
 Track.Name AS TrackName,
 Milliseconds AS TrackLength,
 Genre.Name AS GenreName
 FROM Track
 JOIN Genre
 ON Track.GenreId = Genre.GenreId)

SELECT *
 FROM RankByTrackLength
 WHERE nRank <= 5
 ORDER BY GenreName, nRank;

The same approach provides a solution for MySQL 5.7 and earlier. Just turn the previous
solution into a derived table and filter on the new nRank field, and move the ORDER BY

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 16 of 50

clause into the new main query. Listing 13 (TopNGenreByYearPre8.sql in the MySql folder
of the materials for this session) shows the complete query.

Listing 13. The hard part of getting the top N for each group in MySQL 5.7 and earlier is ranking the records
within the group, as shown in the preceding section. Once that’s done, a simple filter keeps only the top N
records in each group.

SELECT *
 FROM (SELECT @nRank := CASE WHEN @GenreName = GenreName THEN @nRank + 1
 WHEN (@GenreName := GenreName) IS NOT NULL THEN 1 END
 AS nRank,
 GenreTrackLength.*
 FROM (SELECT Genre.Name AS GenreName,
 Track.Name AS TrackName,
 Milliseconds AS TrackLength
 FROM Track
 JOIN Genre
 ON Track.GenreId = Genre.GenreId
 ORDER BY GenreName, TrackLength DESC) GenreTrackLength,
 (SELECT @nRank := 0,
 @GenreName := '') Vars) RankedLengths
 WHERE nRank <= 5
 ORDER BY GenreName, nRank;

Consolidate data from a field into a list
One of the most common questions I see in online VFP forums is how to group data,
consolidating the data from a particular field. If the consolidation you want is counting,
summing, or averaging, the task is simple; just use GROUP BY with the corresponding
aggregate function.

But if you want to create a comma-separated list of all the values or something like that, the
solution isn’t so simple. In VFP, you need a mix of SQL and Xbase. Both SQL Server and
MySQL have language elements to handle the request directly.

The problem we’ll solve here is producing a comma-separated list of playlists for each
track. Figure 7 shows part of the results we’re after (in MySQL). (For some reason, the
Playlist table includes several repeated playlist names, so the results for many of the tracks
include some strings twice, most noticeably “Music.”)

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 17 of 50

Figure 7. Each language offers a different approach to creating a comma-separated list of data from different
records.

VFP

In VFP, you have to collect the data you want and then loop through it to create the list of
playlists for each track. Listing 14 (TrackPlaylists.prg in the VFP folder of the materials for
this session) shows the code. The initial query creates one record for each track/playlist
combination. Then, we create a cursor to hold the final result. The loop goes through the
initial cursor, building up the list for the current track. When we get to the next track, we
save the track we were working on and set a few variables to indicate the current track.
After the loop, we need to save the data for the last track.

Listing 14. In VFP, creating this kind of list requires a loop.

* Get the list with one record per combination
SELECT Track.TrackID, Track.Name AS TrackName, Playlist.Name AS PlayListName ;
 FROM Track ;
 JOIN PlaylistTrack ;
 ON Track.TrackID = PlaylistTrack.TrackID ;
 JOIN Playlist ;
 ON PlaylistTrack.PlaylistID = Playlist.PlaylistID ;
 ORDER BY 1, 3 ;
 INTO CURSOR csrTrackAndPlaylists

LOCAL cPlayLists, iTrackID, cTrackName

* Create a cursor to hold results
CREATE CURSOR csrTrackPlayLists (TrackID I, TrackName VARCHAR(200), PlayLists M)

SELECT csrTrackAndPlayLists
iTrackID = csrTrackAndPlaylists.TrackID
cTrackName = csrTrackAndPlaylists.TrackName
cPlayLists = ''

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 18 of 50

* Loop through to gather data
SCAN
 IF csrTrackAndPlaylists.TrackID <> m.iTrackID
 * Finished current track
 INSERT INTO csrTrackPlayLists ;
 VALUES (m.iTrackID, m.cTrackName, m.cPlayLists)
 iTrackId = csrTrackAndPlaylists.TrackID
 cTrackName = csrTrackAndPlaylists.TrackName
 cPlayLists = ''
 ENDIF

 cPlayLists = IIF(EMPTY(cPlayLists), '', m.cPlayLists + ', ') + ;
 ALLTRIM(csrTrackAndPlaylists.PlaylistName)

ENDSCAN

* Save last record
INSERT INTO csrTrackPlayLists ;
 VALUES (m.iTrackID, m.cTrackName, m.cPlayLists)

SELECT csrTrackPlayLists

MySQL

MySQL has an easy way to get this result. The GROUP_CONCAT() function works with
GROUP BY and lets you create a comma-separated list from the data in each record in the
group.

GROUP_CONCAT() is versatile. It includes a number of optional clauses, including DISTINCT
(to let you cut the list of values down to unique values), ORDER BY (to let you specify the
order in which the values are concatenated), and SEPARATOR (to let you specify a
separator other than comma).

Listing 15 (TrackPlaylists.sql in the MySQL folder of the materials for this session) shows
the MySQL solution. We apply GROUP_CONCAT to the playlist name, using ORDER BY to
make the list alphabetical.

Listing 15. Consolidating a list of values is easy in MySQL because of the GROUP_CONCAT() function.

SELECT Track.TrackID, Track.Name AS TrackName,
 GROUP_CONCAT(Playlist.Name ORDER BY 1) AS PlayLists
FROM Track
 JOIN PlaylistTrack
 ON Track.TrackId = PlaylistTrack.TrackId
 JOIN PlayList
 ON PlaylistTrack.PlaylistId = Playlist.PlaylistId
GROUP BY TrackID, TrackName
ORDER BY 1;

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 19 of 50

SQL Server

Prior to SQL Server 2017, this problem was complex, but that version added the
STRING_AGG() function that’s analogous to MySQL’s GROUP_CONCAT(). The details are a
little different, but the capabilities are quite similar. You pass the expression to consolidate
and the separator to use. Optionally, you can specify the order for the data using the
WITHIN GROUP clause. If the field contains anything other than the field using
STRING_AGG(), the query requires a GROUP BY clause.

Listing 16 (TrackPlaylists.SQL in the SQL Server folder of the materials for this session)
shows the SQL Server 2017 solution for this problem. The parameters to STRING_AGG()
say to combine the Playlist.Name field with comma separators, and the WITHIN GROUP
clause sorts the data on the Playlist.Name field before combining.

Listing 16. The new STRING_AGG() function in SQL Server 2017 makes consolidating data from multiple
records easy.

SELECT Track.TrackID, Track.Name AS TrackName,
 STRING_AGG(Playlist.Name, ',') WITHIN GROUP (ORDER BY Playlist.Name)
 AS PlayLists
FROM Track
 JOIN PlaylistTrack
 ON Track.TrackId = PlaylistTrack.TrackId
 JOIN PlayList
 ON PlaylistTrack.PlaylistId = Playlist.PlaylistId
GROUP BY Track.TrackID, Track.Name
ORDER BY 1;

In earlier versions of SQL Server, there are two ways to solve this problem: using the FOR
XML clause and using a stored function. This paper demonstrates only the FOR XML
solution. My paper
http://tomorrowssolutionsllc.com/ConferenceSessions/Go%20Beyond%20VFPs%20SQL
%20with%20SQL%20Server.pdf works through the stored function solution, as well.

In general, FOR XML allows you to convert SQL results to XML. There are four variations;
three of them produce XML results and vary only in how much control you have over the
format of the result.

The fourth version of FOR XML, using the PATH keyword, provides what we need to
consolidate the data into a single record. FOR XML PATH treats columns as XPath
expressions. XPath, which stands for XML Path language, lets you select items in an XML
document. (The full details are beyond the scope of this paper.)

What you need to know to solve the problem of creating a comma-separated list is that if
you specify FOR XML PATH(''), the expression you specify in the query is consolidated into
a single list, rather than one record per value.

http://tomorrowssolutionsllc.com/ConferenceSessions/Go%20Beyond%20VFPs%20SQL%20with%20SQL%20Server.pdf
http://tomorrowssolutionsllc.com/ConferenceSessions/Go%20Beyond%20VFPs%20SQL%20with%20SQL%20Server.pdf

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 20 of 50

Listing 17 (TracksAndPlaylistsPre2017.SQL in the SQLServer folder of the materials for
this session) shows the complete solution to creating a comma-separated list of playlists
for each track. After the listing, we’ll work through the query from the inside out.

Listing 17. This complex query results in one record per track, with a comma-separated list of playlists that
include that track.

SELECT Track.TrackID AS TrackID, Track.Name AS TrackName,
 STUFF((SELECT ', ' + Name
 FROM (SELECT PlayList.Name
 FROM Track T1
 JOIN PlaylistTrack
 ON T1.TrackId = PlaylistTrack.TrackId
 JOIN PlayList
 ON PlaylistTrack.PlaylistId = Playlist.PlaylistId
 WHERE T1.TrackID = Track.TrackID) AllPLs
 ORDER BY Name
 FOR XML PATH('')), 1, 2, '') AS TrackPlaylists
 FROM Track
 ORDER BY 1;

The innermost query (that begins with SELECT PlayList.Name) gets the list of playlists for a
single track, with one record per playlist. If we extract that query and drop its WHERE
clause, we can get a list of the playlists for each track. Listing 18
(AllTracksAndPlaylists.SQL in the SQLServer folder of the materials for this session) shows
that innermost query, without the WHERE clause, with the track name added to the field
list and the result sorted by track name. Figure 8 shows the results. In the final query, this
subquery is correlated to the main query on the track id, so pulls data for one track at a
time (at least in theory—I suspect the engine is smarter and does the whole thing at once
for optimization purposes).

Listing 18. This query collects the paired list of playlists and tracks. It’s an expanded version of the innermost
query in the overall solution.

SELECT PlayList.Name, T1.Name
 FROM Track T1
 JOIN PlaylistTrack
 ON T1.TrackId = PlaylistTrack.TrackId
 JOIN PlayList
 ON PlaylistTrack.PlaylistId = Playlist.PlaylistId
 ORDER BY T1.Name;

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 21 of 50

Figure 8. To get a comma-separated list of playlists for each track, we first need to collect the right data.

The next query in Listing 17, moving outward, applies FOR XML PATH. Together with the
field expression (', ' + Name), the query says to combine a comma, a space and the Name
field from each record into a single string. Listing 19 (TrackPlaylistOneRecord.SQL in the
SQLServer folder of the materials for this session) contains a modified version of this query
that selects data for a single track (the one with TrackID = 1) and applies this
transformation. Figure 9 shows the result, a single XML string.

Listing 19. When you use FOR XML PATH(''), the specified expression is consolidated into a single record.

SELECT ', ' + Name
 FROM (SELECT PlayList.Name, T1.Name AS TrackName
 FROM Track T1
 JOIN PlaylistTrack
 ON T1.TrackId = PlaylistTrack.TrackId
 JOIN PlayList
 ON PlaylistTrack.PlaylistId = Playlist.PlaylistId
 WHERE T1.TrackId = 1) AllPLs
 ORDER BY Name
 FOR XML PATH('');

Figure 9. The result of using FOR XML PATH is an XML string.

The result is very close to what we want, but we need to remove the leading comma and
space from the string, and of course, in the final result, we want some other fields. The
STUFF() function lets us replace the first two characters in the XML string with the empty
string, giving us the comma-separated list of playlists. That whole expression, with the call
to STUFF() containing the nested queries that produce the result we want, is in the field list
of the final query (in Listing 17) with the track ID and name.

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 22 of 50

Finding duplicates
The repeated playlist names we noticed in the previous example raise the question of how
to find duplicate records. The first issue is deciding what constitutes a duplicate record.
This is a business question, not a programming question, and the answer depends on the
situation. In a customer table, it might be matching addresses, while in a table of people, it
might require an exact match of first and last names, plus social security number.

In Chinook, for the duplicated playlist names, we’d probably want to know whether the
actual lists are the same; perhaps it’s just unfortunate naming. There are also some track
names that appear more than once. That’s not surprising, as many song titles have been
repeated over time. However, a deeper search shows that some track names appear more
than once on the same album. Are those true duplicates? Maybe, but knowing that
sometimes the same song appears twice on the same album (for example, as a reprise), we
might further want to compare the lengths or the file sizes.

Once you know what constitutes a duplicate, identifying duplicate values can be easy. Even
better, the code is the same in all three versions of SQL. Listing 20 shows a query that finds
the duplicated playlist names. (Each of the language-specific folders in the materials for
this session includes a file named FindDups, with the appropriate extension.) Figure 10
shows the results (in SQL Server, but they’re the same in each database).

The idea is to group by the field or fields that define a record as a duplicate and keep only
those that appear more than once. So, in this example, we group on the Name field. (Here,
we’re focusing only on the duplicated Name; you’d need additional code to see whether the
list of tracks on the identically-named playlists is the same.)

Listing 20. Checking whether there are duplicates is fairly easy, but this query doesn’t find the duplicated
records for you.

SELECT Name, COUNT(*)
 FROM PlayList
 GROUP BY Name
 HAVING COUNT(*) > 1;

Figure 10. It’s easy to get a list of duplicated values, along with the number of records containing that value
(or set of values).

However, this approach doesn’t tell you what specific records are duplicated, just which
identifying values they contain. To find the actual records, you need to use the results of the
previous query and grab all the records that match, as in Listing 21 (FindDupRecords in
each of the language-specific folders in the materials for this session). Figure 11 shows the
results (this time in MySQL).

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 23 of 50

Listing 21. To find the actual duplicate records, join the list of duplicates to the original data.

SELECT PlayList.*
 FROM PlayList
 JOIN (SELECT Name, COUNT(*) AS PLCount
 FROM PlayList
 GROUP BY Name
 HAVING COUNT(*) > 1) Dups
 ON PlayList.Name = Dups.Name
 ORDER BY Name;

Figure 11. You can use the list of duplicated values to find the records that contain them.

Once you’ve identified duplicate records, what to do with them is also a business problem,
not a technical problem. Often, the solution is to show them to a user and let the user
decide what to do.

Filling in missing values
When aggregating data, especially over periods of times (days, months, years, etc.), it’s not
unusual to run into cases where some periods are missing. For example, the code in Listing
22 (SalesByDay in the language-specific folders of the materials for this session) computes
the daily sales for Chinook, that is, for each date, the number of tracks sold and the revenue
for those tracks. (The listing is the VFP version.) The partial results shown in Figure 12 let
you see that there are dates on which there were no sales. (While that seems unlikely for a
production application, imagine aggregating sales by day for each artist. It’s not at all
unlikely that on some days, some artists didn’t sell at all.)

Listing 22. This VFP query computes daily sales.

SELECT InvoiceDate, ;
 SUM(Quantity) AS NumTracks, ;
 SUM(Quantity * InvoiceLine.UnitPrice) AS TotalSales ;
 FROM Invoice ;
 JOIN InvoiceLine ;
 ON Invoice.InvoiceID = InvoiceLine.InvoiceID ;
 JOIN Track ;
 ON InvoiceLine.TrackID = Track.TrackID ;
 GROUP BY InvoiceDate ;
 ORDER BY 1 ;
 INTO CURSOR csrSalesByDate

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 24 of 50

Figure 12. When you aggregate data, some groups may be missing. Here, there’s no data for January 4,
January 5, or a number of other dates.

In general, in SQL, the way we make sure to include rows that represent missing data is
using outer joins. For example, the query in Listing 23 (SalesByArtist in the language-
specific folders of the materials for this session) computes total sales by artist. The RIGHT
JOIN to the Artist table ensures that every artist shows up in the result, even if no tracks by
that artist have been sold; you can see that in the partial results shown in Figure 13.

Listing 23. Using an OUTER JOIN lets you include data for which there are no matches.

SELECT Artist.ArtistID, ;
 SUM(Quantity) AS NumTracks, ;
 SUM(Quantity * InvoiceLine.UnitPrice) AS TotalSales ;
 FROM Invoice ;
 JOIN InvoiceLine ;
 ON Invoice.InvoiceID = InvoiceLine.InvoiceID ;
 JOIN Track ;
 ON InvoiceLine.TrackID = Track.TrackID ;
 JOIN Album ;
 ON Track.AlbumId = Album.AlbumId ;
 RIGHT JOIN Artist ;
 ON Album.ArtistId = Artist.ArtistId ;
 GROUP BY Artist.ArtistId ;
 ORDER BY 1 ;
 INTO CURSOR csrSalesByArtist

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 25 of 50

Figure 13. When you use an outer join, you can include records from one table that have no matches in other
tables.

But the key to using an outer join this way is that we have a list of all artists we can start
with. In the previous query, we were missing days and the database doesn’t contain a list of
those. We could add a table of dates to the database, but we’d have to add data periodically
to ensure it continues to cover the full period we need.

It’s better to create a list of days on the fly. In VFP, we do that by creating a cursor and
populating it. In SQL Server and MySQL 8, there’s a way to do it that doesn’t require the
(admittedly minor) clean-up a cursor does.

Listing 24 (SalesByDayFull.prg in the materials for this session) shows one solution for
VFP. We find the earliest and latest date in the Invoice table and then create a cursor
containing all dates from the earliest to the latest. (Of course, you might prefer to specify
the range of dates in some other way, perhaps passing the start and end dates as
parameters.) In the daily sales query, we use an outer join to the new cursor to ensure
every date is included.

Listing 24. In VFP, to include missing dates, figure out the range you need and populate a cursor. Then use an
outer join.

SELECT MIN(InvoiceDate) AS MinDate, ;
 MAX(InvoiceDate) AS MaxDate ;
 FROM Invoice ;
 INTO CURSOR csrMinMax

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 26 of 50

CREATE CURSOR csrAllDates (tDate T)

LOCAL nCount, nNumDates, dStart
nNumDates = TTOD(csrMinMax.MaxDate) - TTOD(csrMinMax.MinDate)
dStart = TTOD(csrMinMax.MinDate)

FOR nCount = 0 TO m.nNumDates
 INSERT INTO csrAllDates VALUES (dStart + m.nCount)
ENDFOR

SELECT tDate, ;
 SUM(Quantity) AS NumTracks, ;
 SUM(Quantity * InvoiceLine.UnitPrice) AS TotalSales ;
 FROM Invoice ;
 JOIN InvoiceLine ;
 ON Invoice.InvoiceID = InvoiceLine.InvoiceID ;
 JOIN Track ;
 ON InvoiceLine.TrackID = Track.TrackID ;
 RIGHT JOIN csrAllDates ;
 ON InvoiceDate = tDate ;
 GROUP BY tDate ;
 ORDER BY 1 ;
 INTO CURSOR csrSalesByDate

For SQL Server, we can use a recursive CTE to create the list of dates. The solution is shown
in Listing 25. As in the VFP version, we determine the earliest and latest dates needed with
an initial query. Then, the AllDates portion of the CTE creates the complete list of dates,
which is used in an outer join in the main query. The first query in the CTE’s UNION
establishes the value of @StartDate as the anchor for the recursive CTE. The second query
in the UNION then adds records by adding one day to the previous record until we reach
@EndDate. The final line of the overall query removes any limit on the levels of recursion.

Listing 25. In SQL Server, a recursive CTE lets us generate the list of dates to use in an outer join.

DECLARE @StartDate DATETIME;
DECLARE @EndDate DATETIME;

SELECT @StartDate = MIN(InvoiceDate),
 @EndDate = MAX(InvoiceDate)
 FROM Invoice;

WITH AllDates (tDate)
AS
(SELECT @StartDate
 UNION ALL
 SELECT DATEADD(DAY, 1, tDate)
 FROM AllDates
 WHERE tDate < @EndDate)

SELECT tDate,
 SUM(Quantity) AS NumTracks,
 SUM(Quantity * InvoiceLine.UnitPrice) AS TotalSales
 FROM AllDates

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 27 of 50

 LEFT JOIN Invoice
 ON AllDates.tDate = Invoice.InvoiceDate
 LEFT JOIN InvoiceLine
 ON Invoice.InvoiceID = InvoiceLine.InvoiceID
 LEFT JOIN Track
 ON InvoiceLine.TrackID = Track.TrackID
 GROUP BY tDate
 ORDER BY 1
 OPTION (MAXRECURSION 0);

In the partial results shown in Figure 14, the dates with no sales are included with NULL
for the number of tracks sold and the total sales.

Figure 14. With the outer join, all dates are included, even those with no sales.

MySQL 8 also uses a recursive CTE for this problem, but the syntax is a little different.
Listing 26 shows the code. The first line sets the number of recursion levels permitted;
since the data may cover many years, the default of 1000 isn’t sufficient. Then, as in the SQL
Server example, we find the earliest and latest invoice dates, but MySQL uses := for
assignment rather than =. The second half of the UNION is also a little different than the
SQL Server version; rather than the DATEADD() function (or its MySQL equivalent,
DATE_ADD()), we can just use the + operator to add one day. The main query is identical to
the SQL Server version.

Listing 26. As in SQL Server, in MySQL 8, you can use a recursive CTE to generate the full set of values you
need to do a query that contains all dates.

SET @@cte_max_recursion_depth = 10000;

SELECT @StartDate := MIN(InvoiceDate),
 @EndDate := MAX(InvoiceDate)
 FROM Invoice;

WITH RECURSIVE AllDates (tDate)
AS
(SELECT @StartDate
 UNION ALL
 SELECT tDate + INTERVAL 1 DAY
 FROM AllDates

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 28 of 50

 WHERE tDate < @EndDate)

SELECT tDate,
 SUM(Quantity) AS NumTracks,
 SUM(Quantity * InvoiceLine.UnitPrice) AS TotalSales
 FROM AllDates
 LEFT JOIN Invoice
 ON AllDates.tDate = Invoice.InvoiceDate
 LEFT JOIN InvoiceLine
 ON Invoice.InvoiceID = InvoiceLine.InvoiceID
 LEFT JOIN Track
 ON InvoiceLine.TrackID = Track.TrackID
 GROUP BY tDate
 ORDER BY 1;

In earlier versions of MySQL, the easiest solution is to use a table of dates.

For all three languages, you can substitute 0 for the nulls, using the appropriate function:
NVL() in VFP, ISNULL() in SQL Server or IFNULL() in MySQL.

The problem gets more challenging when there are two columns with values that might be
missing. Suppose we want to find sales for each month for each genre. You can use a query
like the one in Listing 27 (SalesByMonthAndGenre.SQL in the SQLServer folder of the
materials for this session; there are analogous versions for VFP and MySQL in their
respective folders), but as the partial results in Figure 15 show, some month/genre
combinations are missing.

Listing 27. This SQL Server query finds sales by month for each genre, but it only includes the months for
each genre where there were sales.

SELECT YEAR(InvoiceDate) as SaleYear,
 MONTH(InvoiceDate) as SaleMonth,
 Genre.Name,
 SUM(Quantity * InvoiceLine.UnitPrice) AS Total
 FROM Invoice
 JOIN InvoiceLine
 ON Invoice.InvoiceID = InvoiceLine.InvoiceID
 JOIN Track
 ON InvoiceLine.TrackID = Track.TrackID
 JOIN Genre
 ON Track.GenreID = Genre.GenreID
 GROUP BY YEAR(InvoiceDate), Month(InvoiceDate), Genre.Name
 ORDER BY 3, 1, 2;

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 29 of 50

Figure 15. When you get sales by month by genre, some combinations of month and genre are missing.

To get all months for all genres, we need to create those combinations and then do an outer
join. To do that, we use something we usually try to avoid, a cross join (also known as a
Cartesian join), in which every record from one table is matched with every record from
another.

We have the complete list of genres, so we don’t have to construct it, but as with days in the
previous example, we need to create a list of all the months (technically, month/year pairs)
that fall in the period of interest. We can do that by having separate fields for month and
year or by storing a single date for each month into one field. I found that in VFP, separate
month and year fields made the task easiest, while in SQL Server and MySQL, it was easier
to work with a single datetime field containing the first of each month.

Listing 28 (SalesByMonthAndGenreFull.prg in the materials for this session) shows the
complete VFP solution. As in the previous example, we start by finding the first and last
date in the Invoice table. We then find the first day of the month for each of them and use
those dates to drive a loop that fills a cursor with the list of month/year combinations we
want. Figure 16 shows the first 20 rows of that cursor.

Listing 28. To get a list of sales by month and genre that includes those months where a particular genre
wasn’t sold, we need to construct all the combinations of month and genre first.

SELECT MIN(InvoiceDate) AS MinDate, ;
 MAX(InvoiceDate) AS MaxDate ;
 FROM Invoice ;
 INTO CURSOR csrMinMax

CREATE CURSOR csrAllMonths (nYear N(4), nMonth N(2))

LOCAL nCount, dStart, dEnd, dDate
dStart = TTOD(csrMinMax.MinDate) - DAY(csrMinMax.MinDate) + 1
dEnd = TTOD(csrMinMax.MaxDate) - DAY(csrMinMax.MaxDate) + 1

dDate = dStart

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 30 of 50

DO WHILE m.dDate <= m.dEnd
 INSERT INTO csrAllMonths VALUES (YEAR(m.dDate), MONTH(m.dDate))
 dDate = GOMONTH(m.dDate, 1)
ENDDO

SELECT nYear, nMonth, Name AS GenreName ;
 FROM csrAllMonths, Genre ;
 INTO CURSOR csrAllMonthsAndGenres

SELECT nYear as SaleYear, ;
 nMonth as SaleMonth, ;
 GenreName, ;
 SUM(Quantity * InvoiceLine.UnitPrice) AS Total ;
 FROM Invoice ;
 JOIN InvoiceLine ;
 ON Invoice.InvoiceID = InvoiceLine.InvoiceID ;
 JOIN Track ;
 ON InvoiceLine.TrackID = Track.TrackID ;
 JOIN Genre ;
 ON Track.GenreID = Genre.GenreID ;
 RIGHT JOIN csrAllMonthsAndGenres ;
 ON nYear = YEAR(InvoiceDate) ;
 AND nMonth = MONTH(InvoiceDate) ;
 AND GenreName == Genre.Name ;
 GROUP BY 1, 2, 3;
 ORDER BY 3, 1, 2 ;
 INTO CURSOR csrSalesByMonth

Figure 16. The first part of the code in Listing 28 creates this cursor of month/year combinations.

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 31 of 50

The query after the loop uses the old-style FROM clause to specify a cross-join. By listing
the two tables and not providing a join condition, every record in csrAllMonths is matched
with each record in Genre. Figure 17 shows a few rows from the middle of the cursor
created by this query; the complete cursor has 1500 rows. (There are 60 month/year
combinations in the data and 25 genres.)

Figure 17. Once we have the list of month/year combinations, a cross join gives us a record match every
genre with each month and year.

Finally, we use an outer join in the query that computes monthly sales to ensure that every
month/year/genre combination appears in the final results. Figure 18 shows partial
results; the month/year/genre combinations with no sales show nulls in the Total field. (As
in the previous example, you can use NVL() to replace those nulls with zeroes, if you wish.)

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 32 of 50

Figure 18. An outer join combines the complete list of month/year/genre combinations with the computed
monthly sales totals to get us the full results.

The SQL Server version, shown in Listing 29 (SalesByMonthAndGenreFull.SQL in the
SQLServer folder of the materials for this session) uses a series of CTEs. The first uses the
same technique as in Listing 25 to build the list of months. In this case, each record
contains a single datetime field containing the first day of the particular month.

Listing 29. In SQL Server, we can use a series of CTEs to pull together all the data we need, but the basic
approach is quite similar.

DECLARE @StartDate DATETIME;
DECLARE @EndDate DATETIME;

SELECT @StartDate = MIN(InvoiceDate),
 @EndDate = MAX(InvoiceDate)
 FROM Invoice;

SET @StartDate = DATEADD(MONTH, DATEDIFF(MONTH, 0, @StartDate), 0);
SET @EndDate = DATEADD(MONTH, DATEDIFF(MONTH, 0, @EndDate), 0);

WITH AllMonths (tDate)

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 33 of 50

AS
(SELECT @StartDate AS tDate
 UNION ALL
 SELECT DATEADD(m, 1, tDate)
 FROM AllMonths
 WHERE tDate < @EndDate),

MonthsByGenres (tDate, GenreName)
AS
(SELECT tDate, Name
 FROM AllMonths
 CROSS JOIN Genre),

SalesByDay (InvoiceDate, Name, Total)
AS
(SELECT InvoiceDate,
 Genre.Name,
 SUM(Quantity * InvoiceLine.UnitPrice) AS Total
 FROM Invoice
 JOIN InvoiceLine
 ON Invoice.InvoiceID = InvoiceLine.InvoiceID
 JOIN Track
 ON InvoiceLine.TrackID = Track.TrackID
 JOIN Genre
 ON Track.GenreID = Genre.GenreID
 GROUP BY InvoiceDate, Genre.Name)

SELECT YEAR(tDate) as SaleYear,
 MONTH(tDate) as SaleMonth,
 MonthsByGenres.GenreName,
 SUM(Total) AS Total
 FROM MonthsByGenres
 LEFT JOIN SalesByDay
 ON InvoiceDate >= tDate
 AND InvoiceDate < DATEADD(MONTH, 1, tDate)
 AND MonthsByGenres.GenreName = SalesByDay.Name
 GROUP BY tDate, GenreName
 ORDER BY 3, 1, 2;

The second CTE does a cross join between the first and the Genre table. SQL Server lets you
simply specify CROSS JOIN.

The third CTE isn’t directly related to the first two; it aggregates the sales for each genre by
day. Because the MonthsByGenres CTE contains the first day of each month, we need to
keep the invoice date in SalesByDay in order to be able to do the join.

Finally, the main query joins MonthsByGenres with SalesByDay to get the final results.

The MySQL 8 version of the solution is quite similar to the SQL Server version, but as with
the simpler problem, reflects some language differences. It’s shown in Listing 30 (and
included as SalesByMonthAndGenreFull.sql in the MySQL folder of the materials for this
session). In addition to the differences discussed for the simpler problem, the technique for
finding the first day of the month of a specified date is a little different than the SQL Server

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 34 of 50

version, reflecting that MySQL’s Date_Add() function takes different parameters than SQL
Server’s DATEADD().

Listing 30. In MySQL, the solution to filling in missing data on multiple dimensions also uses a series of CTEs.
It’s analogous to the SQL Server solution, but with some syntactic differences.

SELECT @StartDate := MIN(InvoiceDate),
 @EndDate := MAX(InvoiceDate)
 FROM Invoice;

SET @StartDate := DATE_ADD(@StartDate, interval -day(@StartDate) + 1 day);
SET @EndDate := DATE_ADD(@EndDate, interval -day(@EndDate) + 1 day);

WITH RECURSIVE AllMonths (tDate)
AS
(SELECT @StartDate AS tDate
 UNION ALL
 SELECT tDate + interval 1 month
 FROM AllMonths
 WHERE tDate < @EndDate),

MonthsByGenres (tDate, GenreName)
AS
(SELECT tDate, Name
 FROM AllMonths
 CROSS JOIN Genre),

SalesByDay (InvoiceDate, Name, Total)
AS
(SELECT InvoiceDate,
 Genre.Name,
 SUM(Quantity * InvoiceLine.UnitPrice) AS Total
 FROM Invoice
 JOIN InvoiceLine
 ON Invoice.InvoiceID = InvoiceLine.InvoiceID
 JOIN Track
 ON InvoiceLine.TrackID = Track.TrackID
 JOIN Genre
 ON Track.GenreID = Genre.GenreID
 GROUP BY InvoiceDate, Genre.Name)

SELECT YEAR(tDate) as SaleYear,
 MONTH(tDate) as SaleMonth,
 MonthsByGenres.GenreName,
 SUM(Total) AS Total
 FROM MonthsByGenres
 LEFT JOIN SalesByDay
 ON InvoiceDate >= tDate
 AND InvoiceDate < tDate + interval 1 month
 AND MonthsByGenres.GenreName = SalesByDay.Name

 GROUP BY tDate, GenreName
 ORDER BY 3, 1, 2;

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 35 of 50

As with the previous example, the easiest way to do this in earlier versions of MySQL is to
use a calendar table. Once that exists, the rest of the solution is quite similar to the MySQL 8
versions.

Running totals
It’s easy to compute totals such as the total sales for a day or a month. But users often want
to see a running total, for example, for each day of the month, the sales for the month
through that day.

Suppose we want to see the daily sales for each genre, along with a running total for the
month. Getting daily sales by genre is straightforward and is quite similar in all versions of
SQL. Listing 31 shows a version that runs in both MySQL and SQL Server. The VFP version
differs only in punctuation and in adding INTO CURSOR. (The example is available as
DailySalesByGenre in the language-specific folders of the materials for this session)

Listing 31. Totaling sales by day for each genre is simple.

SELECT InvoiceDate, Genre.Name,
 SUM(Quantity * invoiceline.UnitPrice) AS DailySales
 FROM invoice
 JOIN invoiceline
 ON invoice.InvoiceId = invoiceline.InvoiceId
 JOIN track
 ON invoiceline.TrackId = track.TrackId
 JOIN genre
 ON track.GenreId = genre.GenreId
 GROUP BY InvoiceDate, Genre.Name
 ORDER BY Genre.Name, InvoiceDate;

Adding running totals is another problem that requires a mix of SQL and Xbase in VFP.
First, we run a query much like the previous example to get the daily totals and then, we
loop through the result to compute the running total for the current month. Listing 32
(SalesWithMonthlyRunningTotal.PRG in the VFP folder of the materials for this session)
shows the code. The only difference between the first query and one that computes only
daily sales is the addition of an empty column to hold the running total and the use of
READWRITE to allow us to modify that column later. The loop keeps track of what month
and genre we’re working on and when we reach the end of a month/genre combination,
resets the running total to 0. Partial results are shown in Figure 19.

Listing 32. In VFP, computing running totals requires a loop.

SELECT InvoiceDate, PADR(Genre.Name, 120) as Name, ;
 SUM(Quantity * InvoiceLine.UnitPrice) AS DailyGenreSales, ;
 CAST(0 as N(20,2)) AS MonthlyRunningTotal ;
 FROM Invoice ;
 JOIN InvoiceLine ;
 ON Invoice.InvoiceID = InvoiceLine.InvoiceID ;
 JOIN Track ;
 ON InvoiceLine.TrackID = Track.TrackID ;
 JOIN Genre ;

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 36 of 50

 ON Track.GenreId = Genre.GenreId ;
 GROUP BY 1, 2 ;
 ORDER BY 2, 1 ;
 INTO CURSOR csrGenreSalesByDay READWRITE

* Compute running totals
LOCAL nYear, nMonth, nTotal, cGenre
STORE 0 TO nYear, nMonth, nTotal
cGenre = ''

SCAN
 IF nYear <> YEAR(InvoiceDate) OR ;
 nMonth <> MONTH(InvoiceDate) OR ;
 NOT (m.cGenre == UPPER(Name))

 nYear = YEAR(InvoiceDate)
 nMonth = MONTH(InvoiceDate)
 cGenre = UPPER(Name)
 nTotal = 0
 ENDIF
 nTotal = m.nTotal + DailyGenreSales
 REPLACE MonthlyRunningTotal WITH m.nTotal
ENDSCAN

Figure 19. To compute running totals for each month, first collect the data and then loop through computing
the running total.

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 37 of 50

The VFP folder in the materials for this session also includes SalesWithRunningTotal.PRG, a
more complex program that includes the total for the month in each record.

In SQL Server and MySQL 8, this is another problem solved by OVER. Beginning in SQL
Server 2012, when using OVER with an aggregate function, you can include an ORDER BY
clause. MySQL 8 supports this, as well. Doing so computes a running total, running count or
moving average (depending on which aggregate function you’re using). Listing 33 shows
the SQL Server and MySQL solution (SalesWithRunningTotal.SQL in the appropriate folder
of the materials for this session); it looks less like the daily sales by genre query than in the
VFP solution. The query includes the monthly total to demonstrate the difference between
including and omitting ORDER BY when aggregating with OVER. Although we casually say
“monthly totals” or “monthly running totals,” we need to include both month and year in
the partition, so that we’re totaling only data from one calendar month, not from the same
month across all years. Figure 20 shows partial results.

Listing 33. Computing running totals is easy in SQL Server, using OVER.

SELECT DISTINCT InvoiceDate, Genre.Name,
 SUM(Quantity * InvoiceLine.UnitPrice)
 OVER (PARTITION by Track.GenreID, InvoiceDate) AS DailyGenreSales,
 SUM(Quantity * InvoiceLine.UnitPrice)
 OVER (PARTITION by Track.GenreID, MONTH(InvoiceDate), YEAR(InvoiceDate))
 AS MonthlyGenreSales,
 SUM(Quantity * InvoiceLine.UnitPrice)
 OVER (PARTITION BY Track.GenreID, MONTH(InvoiceDate), YEAR(InvoiceDate)
 ORDER BY InvoiceDate) AS MonthlyRunningSales
 FROM Invoice
 JOIN InvoiceLine
 ON Invoice.InvoiceID = InvoiceLine.InvoiceID
 JOIN Track
 ON InvoiceLine.TrackID = Track.TrackID
 JOIN Genre
 ON Track.GenreId = Genre.GenreId
 ORDER BY 2, 1;

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 38 of 50

Figure 20. With the monthly total in the results, you can see the running total for the month approach the
final value.

While MySQL 8.0 supports OVER, earlier versions did not. But there’s still a way to compute
running totals there. The way to do it is not that different from the VFP solution, except that
it can all be done in the context of a single (complex) query.

As in some earlier examples, the trick is to use variables in the query. In this case, they keep
track of what month, year and genre you last saw, use them to decide whether the current
record is from the same month, year and genre, and then update them. The solution relies
on the fact that the MySQL engine evaluates the fields for each record in the order they’re
listed in the query. Listing 34 (SalesWithRunningTotalMonthlyPre8.sql in the MySQL
folder on the materials for this session; that folder also includes
SalesWithRunningTotalDailyPre8.sql, which uses the same technique to compute a running
total of sales on a daily basis) shows the complete solution; we’ll break it down below.

Listing 34. In versions before MySQL 8, you can compute running totals using variables to track where you
are.

SELECT InvoiceDate, Name, DailySales,
 IF(@PrevMonth = MONTH(InvoiceDate)
 and @PrevYear = YEAR(InvoiceDate)
 and @PrevGenre = Name,
 @RunningSales := @RunningSales + DailySales,
 @RunningSales := DailySales) AS MonthlyRunning,
 @PrevMonth := MONTH(InvoiceDate),
 @PrevYear := YEAR(InvoiceDate),
 @PrevGenre := Name
 FROM (SELECT InvoiceDate, Genre.Name,
 SUM(Quantity * invoiceline.UnitPrice) AS DailySales
 FROM invoice
 JOIN invoiceline
 ON invoice.InvoiceId = invoiceline.InvoiceId
 JOIN track
 ON invoiceline.TrackId = track.TrackId
 JOIN genre

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 39 of 50

 ON track.GenreId = genre.GenreId
 GROUP BY InvoiceDate, Genre.Name
 ORDER BY Genre.Name, InvoiceDate) DailyTotals
 JOIN (SELECT @RunningSales := 0,
 @PrevMonth := 0,
 @PrevYear := 0,
 @PrevGenre := '') RS
 ORDER BY Name, InvoiceDate;

The query joins two derived tables. The first is the query that computes daily totals; it’s the
same query as in Listing 31. The second creates and initializes four variables:
@RunningSales holds the running total of sales for the current month; @PrevMonth holds
the month for the prior record; @PrevYear holds the year for the prior record; @PrevGenre
holds the genre name for the prior record. There’s no ON clause, so the two are joined via a
cross join. Since there’s only one “record” in the second derived table, there’s one result
record for each record in DailyTotals.

In the field list, the running total is computed by the expression beginning with IF. MySQL’s
IF() is like VFP’s IIF(). It evaluates the first expression you pass to determine whether to
return the value of the second expression or the value of the third. The first expression
compares the variables @PrevMonth, @PrevYear and @PrevGenre to the corresponding
values for the current record. If they match, we’re still on the same month and genre, and
so the sales for this date should be added to the running total we’ve computed so far. If any
of the three don’t match, we’ve started a new month, so we reset the running total to just
the DailySales value from the current record.

Once we’ve done that, we update the three variables (@PrevMonth, @PrevYear,
@PrevGenre) to their values in the current record. Technically, we only need to do that
when one of them has changed, but it’s easier to just do it every time.

This solution depends on processing the records in the right order. Note that the first
derived table (DailyTotals) sorts by genre name and invoice date to make sure that’s the
case.

Matching values when aggregating
Another problem that’s easy with SQL is finding the first or last or highest or lowest value
for something. Just aggregate using the MIN() and MAX() values. But when you’ve done
that, getting at the other values from the record that supplies the minimum or maximum
value isn’t straightforward.

To demonstrate, we’ll find the most recent sale for each customer, including the total
amount of that sale. (Technically, the solutions here actually find the most recent day on
which a customer bought anything and the total spent on that day. The Chinook data
doesn’t include the time for each sale, only the date.) Finding out when each customer last
bought something is easy. Attaching the total for that sale to it is the tricky part. (In fact,
there’s a quirk of VFP that means you can do this quite easily, but it relies on an
undocumented feature, requires you to SET ENGINEBEHAVIOR 70, and works only if you’re

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 40 of 50

trying to find the most recent sale, but not if you’re trying to find the first sale for each
customer, so we’re not going to look at it here. There’s discussion of this issue in
http://www.tomorrowssolutionsllc.com/Articles/Using%20SQL%20the%20VFP%208%2
0way.PDF.)

In VFP, while you can do it the right way with SQL alone, it takes a series of queries, as
shown in Listing 35 (CustomerMostRecentSale.prg in the VFP folder of the materials for
this session). First, we consolidate the sale data to get one record per customer per day
showing the total spent by that customer that day. Figure 21 shows partial results from
that query. The second query aggregates the data in the first to find the most recent date on
which each customer bought something; partial results are shown in Figure 22. The key
point here is that, while the second query tells us when each customer last bought
something, it doesn’t tell us how much they spent. You can’t just add Total to this query
because every field in a grouped query has to either be part of the GROUP BY expression or
use one of the aggregate functions. On the other hand, while you could add MAX(Total),
that wouldn’t tell you the total for the most recent sale, but the most that customer ever
spent in a day. In order to find the total for the most recent sale, we need to join the two
cursors we’ve created so far, matching records on both CustomerID and on the date of the
most recent sale. Figure 23 shows partial results.

Listing 35. To find other data that goes along with the minimum or maximum value of a field, you need
several steps.

SELECT Customer.CustomerId, FirstName, LastName, ;
 InvoiceDate, SUM(Quantity * UnitPrice) AS Total;
 FROM Customer ;
 JOIN Invoice ;
 ON Customer.CustomerId = Invoice.CustomerId ;
 JOIN InvoiceLine ;
 ON Invoice.InvoiceId = InvoiceLine.InvoiceId ;
 GROUP BY Customer.CustomerId, FirstName, LastName, InvoiceDate ;
 INTO CURSOR csrCustomerDailySales

SELECT CustomerId, MAX(InvoiceDate) AS MostRecent;
 FROM csrCustomerDailySales ;
 GROUP BY CustomerID ;
 INTO CURSOR csrCustomerMostRecent

SELECT csrCustomerDailySales.CustomerId, FirstName, LastName, ;
 InvoiceDate, Total ;
 FROM csrCustomerDailySales ;
 JOIN csrCustomerMostRecent ;
 ON csrCustomerDailySales.CustomerID = csrCustomerMostRecent.CustomerID ;
 AND csrCustomerDailySales.InvoiceDate = csrCustomerMostRecent.MostRecent ;
 INTO CURSOR csrCustomerMostRecentSale

http://www.tomorrowssolutionsllc.com/Articles/Using%20SQL%20the%20VFP%208%20way.PDF
http://www.tomorrowssolutionsllc.com/Articles/Using%20SQL%20the%20VFP%208%20way.PDF

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 41 of 50

Figure 21. It’s easy to compute the daily sales for each customer.

Figure 22. Once we have the total sales by day for each customer, a second query finds the most recent day
that customer bought something, but it doesn’t tell us how much they spent that day.

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 42 of 50

Figure 23. To find the amount the customer spent most recently, we join the cursor of daily totals with the
cursor showing the most recent sales.

SQL Server and MySQL 8 have a more direct route to the result, using a couple of CTEs and
the OVER clause. OVER supports a pair of functions named FIRST_VALUE() and
LAST_VALUE(). FIRST_VALUE() accepts an expression and returns the value of that
expression in each partition based on the order you specify. In this case, it’s exactly what
we need. Listing 36 shows the query (CustomerMostRecentSale.sql in the appropriate
folder of the materials for this session). The first CTE is the same as the first query in the
VFP solution; it computes the daily total for each customer. The second CTE uses both
MAX() and FIRST_VALUE() with OVER to find the most recent date for each customer and
the corresponding sales total. Note that the two uses of OVER require different details. For
MAX(), we need just a PARTITION BY clause, telling us to do this calculation for each
customer. With FIRST_VALUE(), we also need ORDER BY to indicate which record is first in
the partition. The second CTE has one record for each customer for each day that customer
made a purchase, but the records for each customer are identical. So the main query keeps
just one record per customer.

Listing 36. In SQL Server and MySQL 8, a couple of CTEs along with a couple of OVER clauses let you find both
the date and the total of each customer’s most recent purchase.

WITH csrCustomerDailySales (CustomerID, FirstName, LastName, InvoiceDate, Total)
AS (SELECT Customer.CustomerId, FirstName, LastName,
 InvoiceDate, SUM(Quantity * UnitPrice)
 FROM Customer
 JOIN Invoice
 ON Customer.CustomerId = Invoice.CustomerId
 JOIN InvoiceLine
 ON Invoice.InvoiceId = InvoiceLine.InvoiceId
 GROUP BY Customer.CustomerId, FirstName, LastName, InvoiceDate),

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 43 of 50

csrWithMax (CustomerID, FirstName, LastName, InvoiceDate, Total)
AS (SELECT CustomerId, FirstName, LastName,
 MAX(InvoiceDate) OVER (PARTITION BY CustomerId),
 FIRST_VALUE(Total)
 OVER (PARTITION BY CustomerId ORDER BY InvoiceDate DESC)
 FROM csrCustomerDailySales)

SELECT DISTINCT *
 FROM csrWithMax

While it’s not an issue for this example, it’s important to know that LAST_VALUE() does not
behave the same as FIRST_VALUE(). By default, the function returns the “running last
value,” that is, the one you’re up to. The secret to getting the actual last value in the
partition is to use the window frame notation (described in “Introducing OVER,” earlier in
this paper). The default frame is RANGE BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW. To get a value from the last record of the partition, we need RANGE
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

Dealing with hierarchical data
Most databases we deal with include hierarchical data, with multiple tables containing
different levels of the hierarchy. But certain kinds of hierarchical data are best stored by
including multiple levels of the hierarchy in a single table. Typical examples include
organizational charts for a business, where each employee record includes a pointer to the
employee's supervisor, who is also an employee; family relationships, where each person
may be related to other people in one of several ways; and bills of materials, where a part
may be constructed of other parts, which in turn are constructed of other parts.

While this structure is handy for storing the data, extracting it is trickier. In fact, if there are
more than two levels of data, you can't use a single query to extract the whole hierarchy.

The Chinook employee table is an example of such data. Each record contains a ReportsTo
field that points to another record in the same table, the one for that employee’s manager.
There are a number of questions you can ask in this situation.

Matching all employees with their managers

We'll start with the simplest question. How do we get the name of each employee and his or
her supervisor? It takes a self-join, but is fairly straightforward. Other than punctuation
(and the inclusion of an INTO clause in VFP), the query is identical in all three SQL versions.
Listing 37 (EmpWMgr in the appropriate folders of the materials for this session) shows
the MySQL and SQL Server version. The query uses a self-join of the Employee table. The
first instance is given the local alias Emp to indicate its use for employee records, while the
second has the local alias Mgr to indicate it’s the source for manager records. The LEFT
JOIN ensures that the person at the top of the hierarchy is included in the results. The
results are shown in Figure 24.

Listing 37. It’s easy to match every employee with their own manager, using a self-join.

SELECT Emp.FirstName AS EmpFirst,

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 44 of 50

 Emp.LastName AS EmpLast,
 Mgr.FirstName AS MgrFirst,
 Mgr.LastName AS MgrLast
 FROM Employee Emp
 LEFT JOIN Employee Mgr
 ON Emp.ReportsTo = Mgr.EmployeeID ;

Figure 24. A simple query lets us match each employee to their supervisor.

What’s the management hierarchy for an employee?

Where things get harder is when you want to walk up or down the hierarchy. Walking up
the hierarchy means, given a particular employee, retrieve the name of her manager and of
the manager’s manager and of the manager’s manager’s manager and so on up the line until
you reach the person in charge.

VFP’s SQL alone doesn’t offer a solution for this problem. Instead, you need to combine a
little bit of SQL with some Xbase code, as in Listing 38. This solution (EmpHierarchy.prg in
the VFP folder of the materials for this session) is written as a function, with the primary
key for the specified employee passed as a parameter. The strategy is to start with the
employee you’re interested in, insert her data into the result cursor, then grab the PK for
her manager and repeat until you reach an employee whose ReportsTo field is empty. The
results when the parameter is 5 are shown in Figure 25.

Listing 38. To climb the management hierarchy for an employee in VFP, you combine SQL and Xbase code,
though it’s mostly Xbase.

LPARAMETERS iEmpID

LOCAL iCurrentID , iLevel

CREATE CURSOR EmpHierarchy ;
 (cFirst C(15), cLast C(20) , iLevel I)

USE Employee IN 0 ORDER EmployeeID

iCurrentID = iEmpID
iLevel = 1

DO WHILE NOT EMPTY(iCurrentID)

 SEEK iCurrentID IN Employee

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 45 of 50

 INSERT INTO EmpHierarchy ;
 VALUES (Employee.FirstName, ;
 Employee.LastName, ;
 m.iLevel)

 iCurrentID = Employee.ReportsTo
 iLevel = m.iLevel + 1
ENDDO

USE IN Employee
SELECT EmpHierarchy

Figure 25. You can show each level of an employee’s management hierarchy in one record.

In SQL Server and MySQL 8, you can use a recursive CTE to do the whole job in a single
query. The queries differ only in the inclusion of the keyword RECURSIVE, required in
MySQL. The SQL Server version is shown in Listing 39, while the MySQL version is shown
in Listing 40. They’re included as EmpHierarchy.sql in the respective folders of the
materials for this session.

The anchor portion of the CTE selects the specified person (WHERE EmployeeID =
@iEmpID), including that person’s ManagerID in the result and setting up a field to track
the level in the database. The recursive portion of the query joins the Employee table to the
EmpHierarchy table-in-progress (that is, the CTE itself), matching the ManagerID from
EmpHierarchy to Employee.EmployeeID. It also increments the EmpLevel field, so that the
first time it executes, EmpLevel is 2, and the second time, it’s 3, and so forth. Once the CTE
is complete, the main query pulls the desired information from it.

Listing 39. In SQL Server, a recursive CTE makes it fairly easy to get the management hierarchy for an
employee.

DECLARE @iEmpID INT = 5;

WITH EmpHierarchy (
 FirstName, LastName, ManagerID, EmpLevel)
AS
(
SELECT FirstName, LastName,
 ReportsTo, 1 AS EmpLevel

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 46 of 50

 FROM Employee
 WHERE EmployeeID = @iEmpID
UNION ALL
SELECT Employee.FirstName, Employee.LastName,
 Employee.ReportsTo,
 EmpHierarchy.EmpLevel + 1 AS EmpLevel
 FROM Employee
 JOIN EmpHierarchy
 ON Employee.EmployeeID = EmpHierarchy.ManagerID
)

SELECT FirstName, LastName, EmpLevel
 FROM EmpHierarchy;

Listing 40. The MySQL 8 version of the code to get the management hierarchy for an employee is almost
identical to the SQL Server version.

SET @iEmpID = 5;

WITH RECURSIVE EmpHierarchy (
 FirstName, LastName, ManagerID, EmpLevel)
AS
(
SELECT FirstName, LastName,
 ReportsTo, 1 AS EmpLevel
 FROM Employee
 WHERE EmployeeID = @iEmpID
UNION ALL
SELECT Employee.FirstName, Employee.LastName,
 Employee.ReportsTo,
 EmpHierarchy.EmpLevel + 1 AS EmpLevel
 FROM Employee
 JOIN EmpHierarchy
 ON Employee.EmployeeID = EmpHierarchy.ManagerID
)

SELECT FirstName, LastName, EmpLevel
 FROM EmpHierarchy;

Who does an employee manage?

The other interesting question is how to walk down the hierarchy, how to find the list of all
employees a particular person manages at all levels of the hierarchy. That is, not only those
she manages directly, but people who report to those people, and so on down the line.

To make the results more meaningful, we want to include the name of the employee’s
direct manager in the results.

What makes this difficult in VFP is that at each level, you may (probably do) have multiple
employees. You need not only to add each to the result, but to check who each of them
manages. That means you need some way of keeping track of who you’ve checked and who
you haven’t.

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 47 of 50

The solution in Listing 41 (MgrHierarchy.prg in the VFP folder of the materials for this
session) uses two cursors. One (MgrHierarchy) holds the results, while the other
(EmpsToProcess) holds the list of people to check.

As in the previous example, the code is written as a function, with the primary key of the
employee of interest passed as a parameter. To kick the process off, a single record is
added to EmpsToProcess, with information about the specified employee. Then a loop
through EmpsToProcess handles one employee at a time. A record is inserted into
MgrHierarchy for that employee, and then records are added to EmpsToProcess for
everyone directly managed by the employee currently being processed.

The most interesting bit of this code is that the SCAN loop has no problem with records
being added to the cursor being scanned. We just have to keep track of the record pointer,
and after adding records, move it back to the record we’re currently processing.

Figure 26 shows the results when employee ID 1 is passed. That employee is the overall
boss of the organization, so those results show the complete employee hierarchy.

Listing 41. In VFP, finding everyone an employee manages at all levels of the hierarchy requires two cursors
and a mix of Xbase and SQL code.

LPARAMETERS iEmpID

LOCAL iCurrentID, iLevel, cFirst, cLast
LOCAL nCurRecNo, cMgrFirst, cMgrLast

CREATE CURSOR MgrHierarchy ;
 (cFirst C(15), cLast C(20), iLevel I, ;
 cMgrFirst C(15), cMgrLast C(15))
CREATE CURSOR EmpsToProcess ;
 (EmployeeID I, cFirst C(15), cLast C(20), ;
 iLevel I, cMgrFirst C(15), cMgrLast C(15))

INSERT INTO EmpsToProcess ;
 SELECT m.iEmpID, FirstName, LastName, 1, "", "" ;
 FROM Employee ;
 WHERE EmployeeID = m.iEmpID

SELECT EmpsToProcess

SCAN
 iCurrentID = EmpsToProcess.EmployeeID
 iLevel = EmpsToProcess.iLevel
 cFirst = EmpsToProcess.cFirst
 cLast = EmpsToProcess.cLast
 cMgrFirst = EmpsToProcess.cMgrFirst
 cMgrLast = EmpsToProcess.cMgrLast

 * Insert this records into result
 INSERT INTO MgrHierarchy ;
 VALUES (m.cFirst, m.cLast, m.iLevel, m.cMgrFirst, m.cMgrLast)

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 48 of 50

 * Grab the current record pointer
 nCurRecNo = RECNO("EmpsToProcess")

 INSERT INTO EmpsToProcess ;
 SELECT EmployeeID, FirstName, LastName, m.iLevel + 1, m.cFirst, m.cLast ;
 FROM Employee ;
 WHERE ReportsTo = m.iCurrentID

 * Restore record pointer
 GO m.nCurRecNo IN EmpsToProcess
ENDSCAN

SELECT MgrHierarchy

Figure 26. It takes a mix of Xbase and SQL code to trace downward through the management hierarchy in
VFP.

In SQL Server and MySQL, tracing downward is no harder than tracing upward. The
solutions in Listing 42 for SQL Server and Listing 43 for MySQL 8 (MgrHierarchy.sql in the
appropriate folders of the materials for this session) differ from the previous examples
only in the direction of the join between the CTE and the Employee table, and in including
the additional fields to hold the manager’s name for each employee.

Listing 42. To walk down the management hierarchy in SQL Server is no harder than walking up.

DECLARE @iEmpID INT = 1;

WITH EmpHierarchy
 (FirstName, LastName, EmployeeID, EmpLevel, MgrFirst, MgrLast)
AS
(
SELECT FirstName, LastName,
 EmployeeID, 1 AS EmpLevel,
 CAST('' AS NVARCHAR(20)) AS MgrFirst,
 CAST('' AS NVARCHAR(20)) AS MgrLast
 FROM Employee
 WHERE EmployeeID = @iEmpID
UNION ALL
SELECT Employee.FirstName, Employee.LastName,

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 49 of 50

 Employee.EmployeeID,
 EmpHierarchy.EmpLevel + 1 AS EmpLevel,
 EmpHierarchy.FirstName AS MgrFirst,
 EmpHierarchy.LastName AS MgrLast
 FROM Employee
 JOIN EmpHierarchy
 ON Employee.ReportsTo = EmpHierarchy.EmployeeID
)

SELECT FirstName, LastName, EmpLevel,
 MgrFirst, MgrLast
 FROM EmpHierarchy;

Listing 43. As in SQL Server, the MySQL code to walk down the management hierarchy is almost identical to
the code to walk up the hierarchy.

SET @iEmpID = 1;

WITH RECURSIVE EmpHierarchy
 (FirstName, LastName, EmployeeID, EmpLevel, MgrFirst, MgrLast)
AS
(
SELECT FirstName, LastName,
 EmployeeID, 1 AS EmpLevel,
 CAST('' AS CHAR(20)) AS MgrFirst,
 CAST('' AS CHAR(20)) AS MgrLast
 FROM Employee
 WHERE EmployeeID = @iEmpID
UNION ALL
SELECT Employee.FirstName, Employee.LastName,
 Employee.EmployeeID,
 EmpHierarchy.EmpLevel + 1 AS EmpLevel,
 EmpHierarchy.FirstName AS MgrFirst,
 EmpHierarchy.LastName AS MgrLast
 FROM Employee
 JOIN EmpHierarchy
 ON Employee.ReportsTo = EmpHierarchy.EmployeeID
)

SELECT FirstName, LastName, EmpLevel,
 MgrFirst, MgrLast
 FROM EmpHierarchy;

The HierarchyID type

Starting in SQL Server 2008, there’s a data type called HierarchyID, designed to make it
easier to store information about this type of hierarchy. It allows each record to have a
single field that encodes the entire hierarchy to reach that record. A set of methods,
including GetAncestor and GetDescendant, let you use that data to retrieve other records in
the hierarchy. However, queries to extract data from the hierarchy are not significantly
different than the ones above.

Using SQL to Solve Common Problems

Copyright 2019, Tamar E. Granor Page 50 of 50

For more discussion of this data type, see my article about hierarchical data at
http://www.tomorrowssolutionsllc.com/Articles/Handling%20Hierarchical%20Data.pdf.

Resources
I’ve written a number of other papers about SQL. They’re available at
http://tomorrowssolutionsllc.com/conferencepapers.php; you can filter on the topics
“SQL” and “SQL Server” to quickly find them.

Documentation for both SQL Server and MySQL is available online. The language reference
for SQL Server is at https://docs.microsoft.com/en-us/sql/t-sql/language-reference, while
the documentation for MySQL is at https://dev.mysql.com/doc/.

As with many other topics, StackOverflow is an excellent place to find peer support for SQL
languages. W3Schools has a great deal of SQL information beginning at
https://www.w3schools.com/sql/default.asp.

Summary
The SQL language is a powerful tool for working with data. It can be used to solve a wide
range of problems, but different SQL implementations may require different solutions.

The problems are solutions in this paper are just a small sample of what can be
accomplished with SQL. The techniques used here should help you approach other
problems.

http://www.tomorrowssolutionsllc.com/Articles/Handling%20Hierarchical%20Data.pdf
http://tomorrowssolutionsllc.com/conferencepapers.php
https://docs.microsoft.com/en-us/sql/t-sql/language-reference
https://docs.microsoft.com/en-us/sql/t-sql/language-reference
https://dev.mysql.com/doc/
https://dev.mysql.com/doc/
https://www.w3schools.com/sql/default.asp

	Introduction
	Introducing CTEs
	Introducing OVER
	Numbering and ranking records
	Numbering and ranking across the whole result
	Numbering and ranking within groups

	Top N in each group
	Consolidate data from a field into a list
	VFP
	MySQL
	SQL Server

	Finding duplicates
	Filling in missing values
	Running totals
	Matching values when aggregating
	Dealing with hierarchical data
	Matching all employees with their managers
	What’s the management hierarchy for an employee?
	Who does an employee manage?
	The HierarchyID type

	Resources
	Summary

